The study focused on the detection of indicators of climate change in 24-hourly annual maximum series (AMS) rainfall data collected for 36 years (1982-2017) for Warri Township, using different statistical methods yiel...The study focused on the detection of indicators of climate change in 24-hourly annual maximum series (AMS) rainfall data collected for 36 years (1982-2017) for Warri Township, using different statistical methods yielded a statistically insignificant positive mild trend. The IMD and MCIMD downscaled model’s time series data respectively produced MK statistics varying from 1.403 to 1.4729, and 1.403 to 1.463 which were less than the critical Z-value of 1.96. Also, the slope magnitude obtained showed a mild increasing trend in variation from 0.0189 to 0.3713, and 0.0175 to 0.5426, with the rate of change in rainfall intensity at 24 hours duration as 0.4536 and 0.42 mm/hr.year (4.536 and 4.2 mm/decade) for the IMD and the MCIMD time series data, respectively. The trend change point date occurred in the year 2000 from the distribution-free CUSUM test with the trend maintaining a significant and steady increase from 2010 to 2015. Thus, this study established the existence of a trend, which is an indication of a changing climate, and satisfied the condition for rainfall Non-stationary intensity-duration-frequency (NS-IDF) modeling required for infrastructural design for combating flooding events.展开更多
Inhomogeneities in the daily mean/maximum/ minimum temperature (Tm/Tmax/Tmin) series from 1960- 2008 at 549 National Standard Stations (NSSs) in China were analyzed by using the Multiple Analysis of Series for Hom...Inhomogeneities in the daily mean/maximum/ minimum temperature (Tm/Tmax/Tmin) series from 1960- 2008 at 549 National Standard Stations (NSSs) in China were analyzed by using the Multiple Analysis of Series for Homogenization (MASH) software package. Typical biases in the dataset were illustrated via the cases of Beijing (B J), Wutaishan (WT), Urumqi (UR) and Henan (HN) stations. The homogenized dataset shows a mean warming trend of 0.261/0.193/0.344℃/decade for the annual series of Tm/Tmax/Tmin, slightly smaller than that of the original dataset by 0.006/0.009/0.007℃/decade. However, considerable differences between the adjusted and original datasets were found at the local scale. The adjusted Tmin series shows a significant warming trend almost everywhere for all seasons, while there are a number of stations with an insignificant trend in the original dataset. The adjusted Tm data exhibit significant warming trends annually as well as for the autumn and winter seasons in northern China, and cooling trends only for the summer in the middle reaches of the Yangtze River and parts of central China and for the spring in southwestern China, while the original data show cooling trends at several stations for the annual and seasonal scales in the Qinghai, Shanxi, Hebei, and Xinjiang provinces. The adjusted Tmax data exhibit cooling trends for summers at a number of stations in the mid-lower reaches of the Yangtze and Yellow Rivers and for springs and winters at a few stations in southwestern China, while the original data show cooling trends at three/four stations for the annual/autumn periods in the Qinghai and Yunnan provinces. In general, the number of stations with a cooling trend was much smaller in the adjusted Tm and Tmax dataset than in the original dataset. The cooling trend for summers is mainly due to cooling in August. The results of homogenization using MASH appear to be robust; in particular, different groups of stations with consideration of elevation led to minor effects in the results.展开更多
This study aims at establishing if climate change exists in the Niger Delta environment using non-stationary rainfall Intensity-Duration-Frequency (IDF) modelling incorporating time-variant parameters. To compute the ...This study aims at establishing if climate change exists in the Niger Delta environment using non-stationary rainfall Intensity-Duration-Frequency (IDF) modelling incorporating time-variant parameters. To compute the intensity levels, the open-access R-studio software was used based on the General Extreme Value (GEV) distribution function. Among the four linear parameter models adopted for integrating time as a covariate, the fourth linear model incorporating scale and location with the shape function constant produced the least corrected Akaike Information Criteria (AICc), varying between 306.191 to 101.497 for 15 and 1440 minutes, respectively, selected for calibration of the GEV distribution equation. The non-stationary intensities yielded higher values above those of stationary models, proving that the assumption of stationary IDF models underestimated extreme events. The difference of 13.71 mm/hr (22.71%) to 14.26 mm/hr (17.0%) intensities implies an underestimation of the peak flood from a stationary IDF curve. The statistical difference at a 95% confidence level between stationary and non-stationary models was significant, confirming evidence of climatic change influenced by time-variant parameters. Consequently, emphasis should be on applying shorter-duration storms for design purposes occurring with higher intensities to help reduce the flood risk and resultant infrastructural failures.展开更多
Market traders buy and sell volatile assets frequently,with a goal to maximize their total return.There is usually a commission for each purchase and sale.Two such assets are gold and bitcoin.In order to solve the exi...Market traders buy and sell volatile assets frequently,with a goal to maximize their total return.There is usually a commission for each purchase and sale.Two such assets are gold and bitcoin.In order to solve the existing issues of purchases between gold and bitcoin,given that we have 1,000 USD,what strategies should we take to maximize our profits?In this article,the authors established seven models to predict the value of gold and bitcoins and how you should buy them,as the trends of value fluctuate,our models must be accurate enough to avoid being influenced.Targeted at that,the content is divided into three parts.For part 1:The authors selected several indicators that feature how the stock runs.For instance,price of gold and profit of gold to build first two models,which are the risk of investment model and the judgment on bull-or-bear market model.Then we use these models to evaluate whether it is safe to invest.The models are as follows:bear-bull market judgment model,risk of investment evaluation model,prediction model,trade model.For part 2:Based on the data concerned,the authors established the time series model to predict the way the market fluctuates.Meanwhile,the result of this model can be applied in correcting the results of former two models so as to make it more accurate.For part 3:The authors combined models above to give the best trading strategy.In addition,we improved the models by adding more indicators to make it more precise.We hope that by applying our models and strategies,you can successfully maximize your profit.展开更多
文摘The study focused on the detection of indicators of climate change in 24-hourly annual maximum series (AMS) rainfall data collected for 36 years (1982-2017) for Warri Township, using different statistical methods yielded a statistically insignificant positive mild trend. The IMD and MCIMD downscaled model’s time series data respectively produced MK statistics varying from 1.403 to 1.4729, and 1.403 to 1.463 which were less than the critical Z-value of 1.96. Also, the slope magnitude obtained showed a mild increasing trend in variation from 0.0189 to 0.3713, and 0.0175 to 0.5426, with the rate of change in rainfall intensity at 24 hours duration as 0.4536 and 0.42 mm/hr.year (4.536 and 4.2 mm/decade) for the IMD and the MCIMD time series data, respectively. The trend change point date occurred in the year 2000 from the distribution-free CUSUM test with the trend maintaining a significant and steady increase from 2010 to 2015. Thus, this study established the existence of a trend, which is an indication of a changing climate, and satisfied the condition for rainfall Non-stationary intensity-duration-frequency (NS-IDF) modeling required for infrastructural design for combating flooding events.
基金supported by the National Basic Research Program of China 2009CB421401 and 2006CB400503
文摘Inhomogeneities in the daily mean/maximum/ minimum temperature (Tm/Tmax/Tmin) series from 1960- 2008 at 549 National Standard Stations (NSSs) in China were analyzed by using the Multiple Analysis of Series for Homogenization (MASH) software package. Typical biases in the dataset were illustrated via the cases of Beijing (B J), Wutaishan (WT), Urumqi (UR) and Henan (HN) stations. The homogenized dataset shows a mean warming trend of 0.261/0.193/0.344℃/decade for the annual series of Tm/Tmax/Tmin, slightly smaller than that of the original dataset by 0.006/0.009/0.007℃/decade. However, considerable differences between the adjusted and original datasets were found at the local scale. The adjusted Tmin series shows a significant warming trend almost everywhere for all seasons, while there are a number of stations with an insignificant trend in the original dataset. The adjusted Tm data exhibit significant warming trends annually as well as for the autumn and winter seasons in northern China, and cooling trends only for the summer in the middle reaches of the Yangtze River and parts of central China and for the spring in southwestern China, while the original data show cooling trends at several stations for the annual and seasonal scales in the Qinghai, Shanxi, Hebei, and Xinjiang provinces. The adjusted Tmax data exhibit cooling trends for summers at a number of stations in the mid-lower reaches of the Yangtze and Yellow Rivers and for springs and winters at a few stations in southwestern China, while the original data show cooling trends at three/four stations for the annual/autumn periods in the Qinghai and Yunnan provinces. In general, the number of stations with a cooling trend was much smaller in the adjusted Tm and Tmax dataset than in the original dataset. The cooling trend for summers is mainly due to cooling in August. The results of homogenization using MASH appear to be robust; in particular, different groups of stations with consideration of elevation led to minor effects in the results.
文摘This study aims at establishing if climate change exists in the Niger Delta environment using non-stationary rainfall Intensity-Duration-Frequency (IDF) modelling incorporating time-variant parameters. To compute the intensity levels, the open-access R-studio software was used based on the General Extreme Value (GEV) distribution function. Among the four linear parameter models adopted for integrating time as a covariate, the fourth linear model incorporating scale and location with the shape function constant produced the least corrected Akaike Information Criteria (AICc), varying between 306.191 to 101.497 for 15 and 1440 minutes, respectively, selected for calibration of the GEV distribution equation. The non-stationary intensities yielded higher values above those of stationary models, proving that the assumption of stationary IDF models underestimated extreme events. The difference of 13.71 mm/hr (22.71%) to 14.26 mm/hr (17.0%) intensities implies an underestimation of the peak flood from a stationary IDF curve. The statistical difference at a 95% confidence level between stationary and non-stationary models was significant, confirming evidence of climatic change influenced by time-variant parameters. Consequently, emphasis should be on applying shorter-duration storms for design purposes occurring with higher intensities to help reduce the flood risk and resultant infrastructural failures.
文摘Market traders buy and sell volatile assets frequently,with a goal to maximize their total return.There is usually a commission for each purchase and sale.Two such assets are gold and bitcoin.In order to solve the existing issues of purchases between gold and bitcoin,given that we have 1,000 USD,what strategies should we take to maximize our profits?In this article,the authors established seven models to predict the value of gold and bitcoins and how you should buy them,as the trends of value fluctuate,our models must be accurate enough to avoid being influenced.Targeted at that,the content is divided into three parts.For part 1:The authors selected several indicators that feature how the stock runs.For instance,price of gold and profit of gold to build first two models,which are the risk of investment model and the judgment on bull-or-bear market model.Then we use these models to evaluate whether it is safe to invest.The models are as follows:bear-bull market judgment model,risk of investment evaluation model,prediction model,trade model.For part 2:Based on the data concerned,the authors established the time series model to predict the way the market fluctuates.Meanwhile,the result of this model can be applied in correcting the results of former two models so as to make it more accurate.For part 3:The authors combined models above to give the best trading strategy.In addition,we improved the models by adding more indicators to make it more precise.We hope that by applying our models and strategies,you can successfully maximize your profit.