Aiming at the problem of temperature rise of mine flameproof outer rotor permanent magnet synchronous motor,based on the fluid structure coupling method,the temperature distribution of motor under three cooling scheme...Aiming at the problem of temperature rise of mine flameproof outer rotor permanent magnet synchronous motor,based on the fluid structure coupling method,the temperature distribution of motor under three cooling schemes of air cooling and water cooling are calculated respectively.For the structure I air cooling system,the influence of different number of heat sink on the maximum temperature rise and pressure drop of fluid channel is analyzed,and the parameters of heat sink are optimized.For the structure II air cooling system,the influence of setting fillet at the turn back of the fluid channel on the head loss in the fluid domain of the motor is analyzed,and the influence of different fillet radius on the head loss and the maximum temperature rise in the fluid domain is obtained.For the structure II water cooling system,the influence of different water flow speed on the maximum temperature rise of the motor is analyzed,and the influence of different assembly clearance of modular stator teeth and yoke on the maximum temperature rise of the motor is analyzed.The cooling effect and temperature rise distribution characteristics of the three cooling schemes are compared and analyzed.Finally,a water-cooled prototype is manufactured,and the temperature rise experiment is carried out,and the influence of the thermal deformation of fluid channel,stator yoke and stator teeth on the maximum temperature of the motor is analyzed.The results show that the calculated temperature field after considering the thermal deformation is closer to the experimental value,which verifies the accuracy of the calculation results,It also provides a reference for the selection and design of the cooling structure of the same type of PMSM electric roller.展开更多
Hybrid excitation synchronous motor has the advantages of uniform and adjustable electromagnetic field, wide speed range and high power density. It has broad application prospects in new energy electric vehicles, wind...Hybrid excitation synchronous motor has the advantages of uniform and adjustable electromagnetic field, wide speed range and high power density. It has broad application prospects in new energy electric vehicles, wind power generation and other fields. This paper introduces the basic structure of hybrid excitation motor with modular stator, and analyzes the operation principle of hybrid excitation motor. The cooling structure of the water-cooled plate is designed, and the effects of the thickness of the water-cooled plate and the number of water channels in the water-cooled plate on the heat dissipation capacity of the water-cooled plate are analyzed by theoretical and computational fluid dynamics methods. The effects of different water cooling plate structures on water velocity, pressure drop, water pump power consumption and heat dissipation capacity were compared and analyzed. The influence of different inlet flow velocity on the maximum temperature rise of each part of the motor is analyzed, and the temperature of each part of the motor under the optimal water flow is analyzed. The influence of the traditional spiral water jacket cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of the motor components is compared and analyzed. The results show that the water-cooled plate cooling structure is more suitable for the modular stator motor studied in this paper. Based on the water-cooled plate cooling structure, the air-water composite cooling structure is designed, and the effects of the air-water composite cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of each component of the motor are compared and analyzed. The results show that the maximum temperature rise of each component of the motor is reduced under the air-water composite cooling structure.展开更多
基金This work has been supported by the National Natural Science Foundation of China(51907129)Project Supported by Department of Science and Technology of Liaoning Province(2021-MS-236).
文摘Aiming at the problem of temperature rise of mine flameproof outer rotor permanent magnet synchronous motor,based on the fluid structure coupling method,the temperature distribution of motor under three cooling schemes of air cooling and water cooling are calculated respectively.For the structure I air cooling system,the influence of different number of heat sink on the maximum temperature rise and pressure drop of fluid channel is analyzed,and the parameters of heat sink are optimized.For the structure II air cooling system,the influence of setting fillet at the turn back of the fluid channel on the head loss in the fluid domain of the motor is analyzed,and the influence of different fillet radius on the head loss and the maximum temperature rise in the fluid domain is obtained.For the structure II water cooling system,the influence of different water flow speed on the maximum temperature rise of the motor is analyzed,and the influence of different assembly clearance of modular stator teeth and yoke on the maximum temperature rise of the motor is analyzed.The cooling effect and temperature rise distribution characteristics of the three cooling schemes are compared and analyzed.Finally,a water-cooled prototype is manufactured,and the temperature rise experiment is carried out,and the influence of the thermal deformation of fluid channel,stator yoke and stator teeth on the maximum temperature of the motor is analyzed.The results show that the calculated temperature field after considering the thermal deformation is closer to the experimental value,which verifies the accuracy of the calculation results,It also provides a reference for the selection and design of the cooling structure of the same type of PMSM electric roller.
基金supported by the National Natural Science Foundation of China (51907129)Project Supported by Department of Science and Technology of Liaoning Province (2021-MS-236)。
文摘Hybrid excitation synchronous motor has the advantages of uniform and adjustable electromagnetic field, wide speed range and high power density. It has broad application prospects in new energy electric vehicles, wind power generation and other fields. This paper introduces the basic structure of hybrid excitation motor with modular stator, and analyzes the operation principle of hybrid excitation motor. The cooling structure of the water-cooled plate is designed, and the effects of the thickness of the water-cooled plate and the number of water channels in the water-cooled plate on the heat dissipation capacity of the water-cooled plate are analyzed by theoretical and computational fluid dynamics methods. The effects of different water cooling plate structures on water velocity, pressure drop, water pump power consumption and heat dissipation capacity were compared and analyzed. The influence of different inlet flow velocity on the maximum temperature rise of each part of the motor is analyzed, and the temperature of each part of the motor under the optimal water flow is analyzed. The influence of the traditional spiral water jacket cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of the motor components is compared and analyzed. The results show that the water-cooled plate cooling structure is more suitable for the modular stator motor studied in this paper. Based on the water-cooled plate cooling structure, the air-water composite cooling structure is designed, and the effects of the air-water composite cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of each component of the motor are compared and analyzed. The results show that the maximum temperature rise of each component of the motor is reduced under the air-water composite cooling structure.
文摘作者分别采用动态法和静态法两种实验方法,以石岛湾4种常见鱼类(许氏平鲉(Sebastes schlegeli)、大泷六线鱼(Hexagrammos otakii)、褐菖鲉(Sebastiscus marmoratus)和矛尾虎鱼(Chaeturichthys stigmatias))为研究对象,对比研究了在4个季节基础水温(5.0~26.0℃)和9个温升速率(0.5~15.0℃/h)下这些鱼类的热耐受性。结果表明,4种鱼类的CTM(最大临界温度)和24 h UILT_(50)(24 h高起始致死温度)均与基础水温呈显著正相关,温升速率对鱼类耐热性的影响因鱼种和季节基础温度而异;相同基础水温下4种实验鱼类的CTM值均高于24 h UILT_(50)。4种鱼类的24 h UILT50依次为:矛尾虎鱼>许氏平鲉>褐菖鲉>大泷六线鱼。