期刊文献+
共找到135篇文章
< 1 2 7 >
每页显示 20 50 100
基于改进VMD-MCKD和深度残差网络的风机齿轮箱故障诊断 被引量:3
1
作者 蔡昌春 何捷 +2 位作者 承敏钢 张能文 王全凯 《山东电力技术》 2024年第2期67-78,共12页
行星齿轮箱是风电机组传动系统中的重要部件,其运行工况复杂,背景噪声大,导致齿轮早期故障信号微弱且极易受背景噪声的影响。针对风电机组齿轮箱早期故障特征难以有效提取,齿轮故障难以识别的问题,提出一种风机齿轮箱故障诊断方法。首先... 行星齿轮箱是风电机组传动系统中的重要部件,其运行工况复杂,背景噪声大,导致齿轮早期故障信号微弱且极易受背景噪声的影响。针对风电机组齿轮箱早期故障特征难以有效提取,齿轮故障难以识别的问题,提出一种风机齿轮箱故障诊断方法。首先,通过变分模态分解算法(variational mode decomposition,VMD)分解风机齿轮箱原始振动信号,获得振动信号故障的最优模态分量;接着,利用最大相关峭度解卷积算法(maximum correlated kurtosis decnvolution,MCKD)通过解卷积重构最优模态分量,削弱背景噪声增强故障冲击成分,获得故障特征;同时利用麻雀搜索算法(sparrow search algorithm,SSA)优化惩罚因子α、模态分解个数K、滤波器阶数L和反褶积周期T等参数,提升振动信号故障特征提取的准确度;最后,构建基于深度残差网络(deep residual network,ResNet)的齿轮箱故障诊断模型,建立齿轮箱故障特征与类别的非线性映射关系,实现风机齿轮箱故障分类识别。实验结果表明,所提风机齿轮箱故障诊断方法的准确率达到97.48%,相较其他方法在信号特征提取和故障诊断效率方面有明显提高。 展开更多
关键词 齿轮故障诊断 变分模态分解 最大相关峭度解卷积 深度残差网络 麻雀搜索算法
下载PDF
基于自适应MCKD与CNN的滚动轴承故障诊断
2
作者 高淑芝 石烁 张义民 《机械设计与制造》 北大核心 2024年第9期186-189,共4页
为了解决强背景噪声下故障特征提取困难及传统方法依赖经验和知识的问题,提出了一种基于自适应最大相关峭度解卷积(MCKD)与卷积神经网络(CNN)的滚动轴承故障诊断方法。首先,利用粒子群算法(PSO)优化MCKD的参数。其次,对滚动轴承故障信... 为了解决强背景噪声下故障特征提取困难及传统方法依赖经验和知识的问题,提出了一种基于自适应最大相关峭度解卷积(MCKD)与卷积神经网络(CNN)的滚动轴承故障诊断方法。首先,利用粒子群算法(PSO)优化MCKD的参数。其次,对滚动轴承故障信号进行信号滤波,得到降噪后的信号。最后,将降噪后的信号输入到构建的CNN模型中进行训练和测试,得到轴承故障诊断的分类结果。通过轴承寿命试验台的故障数据集的测试和评价,将提出的方法与未经过降噪的CNN方法进行比较,验证了该方法具有较高的诊断精度。 展开更多
关键词 最大相关峭度解卷积 卷积神经网络 滚动轴承 故障诊断
下载PDF
改进MCKD-MEEMD在滚动轴承故障诊断中的应用
3
作者 张超 秦敏敏 张少飞 《机械设计与制造》 北大核心 2024年第7期193-199,共7页
为了解决实际工况中故障信号被噪声掩盖,故障特征频率难以提取的问题,提出改进最大峭度解卷积(MCKD)和改进的集总平均经验模态分解(MEEMD)结合的滚动轴承故障诊断方法。首先,提出使用合成峭度作为指标来选取MCKD的最优参数:位移数M和最... 为了解决实际工况中故障信号被噪声掩盖,故障特征频率难以提取的问题,提出改进最大峭度解卷积(MCKD)和改进的集总平均经验模态分解(MEEMD)结合的滚动轴承故障诊断方法。首先,提出使用合成峭度作为指标来选取MCKD的最优参数:位移数M和最大滤波器长度L;然后将最优参数代入MCKD算法中,得到最佳降噪信号;最后对降噪信号使用MEEMD分解,得到若干本征模态分量(IMF),选取合适的分量做信号重构,再对重构信号做频谱分析,在频谱中可以寻找出故障频率以及其他的信息。通过仿真分析了MEEMD方法的优越性及不足之处,并使用改进MCKD方法对不足处进行了改进,将改进MCKD-MEEMD方法与MEEMD方法以及传统MCKD-MEEMD方法进行了实验对比分析,证明了改进MCKD-MEEMD方法的故障诊断效果更好。 展开更多
关键词 最大相关峭度解卷积 合成峭度 经验模态分解 故障诊断
下载PDF
基于MCKD-FDM方法的汽车轴承振动信号降噪
4
作者 田萌 《山西电子技术》 2024年第3期35-36,74,共3页
为了提高电机轴承的故障诊断精度,选择傅里叶分解(FDM)方法把降噪处理信号分解,利用最大相关峭度反褶积(MCKD)重构信号包络谱图实现信息故障的诊断,并开展仿真与实验测试分析。研究结果表明:测试信号形成了明显的故障特征频率与各阶倍频... 为了提高电机轴承的故障诊断精度,选择傅里叶分解(FDM)方法把降噪处理信号分解,利用最大相关峭度反褶积(MCKD)重构信号包络谱图实现信息故障的诊断,并开展仿真与实验测试分析。研究结果表明:测试信号形成了明显的故障特征频率与各阶倍频,各阶倍频都发生了幅值降低。采用本文方法可以显著突出故障冲击成分,也可以提取获得丰富轴承故障信息,更明显体现故障特征频率与倍频。本研究故障诊断方法能够满足高精度的汽车传动系统故障检测要求。 展开更多
关键词 轴承 傅里叶分解方法 最大相关峭度反褶积 故障诊断
下载PDF
基于改进PSO-VMD-MCKD的滚动轴承故障诊断 被引量:1
5
作者 宿磊 刘智 +2 位作者 顾杰斐 李可 薛志钢 《噪声与振动控制》 CSCD 北大核心 2024年第4期118-124,共7页
针对滚动轴承信号在强噪声背景下故障特征提取困难的问题,提出一种变分模态分解(Variational Modal Decomposition,VMD)和最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)相结合的故障诊断方法。首先基于VMD方法... 针对滚动轴承信号在强噪声背景下故障特征提取困难的问题,提出一种变分模态分解(Variational Modal Decomposition,VMD)和最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)相结合的故障诊断方法。首先基于VMD方法选取故障信号的最优模态分量,然后采用MCKD算法增强最优分量信号中的冲击成分,最后通过包络谱分析提取滚动轴承的故障频率。利用粒子群优化算法(Particle Swarm Optimization,PSO)对VMD算法中的参数α和K以及MCKD算法中的参数L和M进行寻优,并对PSO算法中惯性因子和学习因子的更新方法加以改进,以提高参数寻优过程的收敛速度。仿真分析和试验结果表明,所提出的诊断方法可以有效提取被强噪声淹没的滚动轴承故障特征。 展开更多
关键词 故障诊断 滚动轴承 变分模态分解 最大相关峭度解卷积 粒子群优化
下载PDF
自适应MCKD结合Autogram的矿用滚动轴承故障特征提取
6
作者 申勇 章翔峰 +4 位作者 姜宏 周建 汪皖 蒋艺峰 毕君东 《新疆大学学报(自然科学版中英文)》 CAS 2024年第4期505-512,共8页
为辨析矿用滚动轴承运行状态,有效地提取矿用滚动轴承故障特征,提出了一种基于粒子群优化算法(Particle Swarm Optimization,PSO)的参数自适应优化最大相关峭度解卷积算法(Maximum Correlated Kurtosis Deconvolu-tion,MCKD)与自相关谱... 为辨析矿用滚动轴承运行状态,有效地提取矿用滚动轴承故障特征,提出了一种基于粒子群优化算法(Particle Swarm Optimization,PSO)的参数自适应优化最大相关峭度解卷积算法(Maximum Correlated Kurtosis Deconvolu-tion,MCKD)与自相关谱峭度图法(Autogram)相结合的矿用滚动轴承故障特征提取算法.首先,在考虑振动信号的强周期性的基础上,采用MCKD对原始信号进行预处理以实现信号的降噪与增强;同时,针对MCKD参数选择问题,构造利用PSO对适应度函数进行寻优得到合适的参数组合[滤波长度L,解卷积周期T];此后,利用Autogram对处理后信号进行特征提取;最后,通过仿真信号及公开数据集试验信号对该算法进行验证.结果表明:PSO-MCKD-Autogram算法能够较好地克服噪声影响,可有效提取矿用滚动轴承故障特征且具有一定的鲁棒性. 展开更多
关键词 矿用滚动轴承 最大相关峭度解卷积 自相关谱峭度图 故障诊断
下载PDF
基于优化小波包分解的航空发动机主轴承故障特征增强方法
7
作者 张振鹏 栾孝驰 +2 位作者 沙云东 杨杰 赵奉同 《装备环境工程》 CAS 2024年第9期42-49,共8页
目的 解决航空发动机主轴承微弱故障特征在高背景噪声环境和变转速工况下难识别的问题,提出基于优化小波包分解的航空发动机主轴承故障特征增强方法。方法 首先通过计算阶次分析方法,将振动时域信号转化为振动角域信号;然后对振动角域... 目的 解决航空发动机主轴承微弱故障特征在高背景噪声环境和变转速工况下难识别的问题,提出基于优化小波包分解的航空发动机主轴承故障特征增强方法。方法 首先通过计算阶次分析方法,将振动时域信号转化为振动角域信号;然后对振动角域信号进行小波包分解,并引入有效故障特征能量比和优化最大相关峭度解卷积方法对信号故障特征进行增强,通过循环迭代逐步提取故障特征;最后对信号进行包络分析,并与理论轴承故障阶次进行对比,实现轴承故障诊断。结果 通过对整机试车条件下航空发动机主轴承外圈压坑故障实验数据进行分析,验证了该方法能够有效增强振动信号中的故障特征信息。结论 与传统WPD方法相比,该方法可以有效增强主轴承故障特征阶次,实现高背景噪声环境和变转速工况下的故障诊断。 展开更多
关键词 主轴承 优化小波包分解 最大相关峭度解卷积 计算阶次分析 故障特征增强 故障分析
下载PDF
基于FWECS-CYCBD的轴承故障特征提取研究
8
作者 褚惟 刘韬 刘畅 《振动.测试与诊断》 EI CSCD 北大核心 2024年第5期928-935,1038,共9页
针对最大二阶循环平稳盲解卷积(maximum second-order cyclostationary blind deconvolution,简称CYCBD)特征提取中循环频率和滤波带宽难确定的问题,引入频率加权能量相关谱(frequency weighted energy correlation spectrum,简称FWECS... 针对最大二阶循环平稳盲解卷积(maximum second-order cyclostationary blind deconvolution,简称CYCBD)特征提取中循环频率和滤波带宽难确定的问题,引入频率加权能量相关谱(frequency weighted energy correlation spectrum,简称FWECS)来改进CYCBD,实现了低信噪比条件下的滚动轴承故障特征提取。首先,通过FWECS获取周期冲击频率,构造循环频率集;其次,利用最大加权谐波显著性指标设计了一种等步长搜索策略,自适应选取滤波器长度;最后,基于优选的循环频率和滤波带宽进行CYCBD解卷积。轴承仿真和实验数据表明:在循环频率等先验信息未知的情况下,FWECS-CYCBD对故障信号中的微弱冲击特征更敏感;与最小熵解卷积、改进最大相关峭度解卷积和自适应最大二阶循环平稳盲解卷积等方法相比,所提方法在低信噪比条件下能较好地提取轴承故障特征频率信息。 展开更多
关键词 滚动轴承 故障诊断 特征提取 最大二阶循环平稳盲解卷积 频率加权能量相关谱 加权谐波显著性指数
下载PDF
基于泵送频率的往复泵活塞故障诊断方法 被引量:1
9
作者 李喆仁 刘志亮 +4 位作者 莫巍 王文权 徐友红 王皓 万夫 《流体机械》 CSCD 北大核心 2024年第4期95-104,共10页
为了确保往复式钻井泵的高质量运行,实施在线故障监测至关重要。从BW-250型钻井泵液力端的易损件入手,设计了试验探究钻井泵的振动信号的成分;通过对频率成分的分析,揭示了泵送频率幅值与活塞刺漏故障之间的关系,并依据机理提出了以泵... 为了确保往复式钻井泵的高质量运行,实施在线故障监测至关重要。从BW-250型钻井泵液力端的易损件入手,设计了试验探究钻井泵的振动信号的成分;通过对频率成分的分析,揭示了泵送频率幅值与活塞刺漏故障之间的关系,并依据机理提出了以泵送频率幅值作为诊断指标的钻井泵活塞故障检测方法,进一步结合最大相关峭度解卷积滤波及包络谱分析等方法从泵送频率处能量变化的角度,对活塞刺漏这一故障进行了诊断;结合实验室以及钻井现场采集的数据对该方法进行了验证,并将诊断结果同其他振动指标做了对比。结果表明,该方法对于往复泵活塞故障诊断的准确率为91.1%,相较于均方根诊断准确率提升了3.6%、相较于脉冲因子、裕度因子和峭度3种统计指标诊断准确率提升了9%以上。该方法取得了良好的结果,为往复泵活塞组件的故障诊断提出了一种较好的解决思路。 展开更多
关键词 往复泵 振动分析 最大相关峭度解卷积 活塞故障诊断 泵送频率
下载PDF
增强的最小相关广义Lp/Lq范数反卷积在旋转机械故障诊断中的应用
10
作者 谭翠 黄晨光 +2 位作者 易彩 周秋阳 林建辉 《中国测试》 CAS 北大核心 2024年第10期157-166,共10页
用于提取滚动轴承故障周期冲击特征的最小相关广义Lp/Lq范数反卷积(MCG-Lp/Lq-D)存在对先验周期参数的精确度要求过高的问题。因此有必要提出一种新的周期估计方法-具有约束的自适应周期估计(APEC),该方法可以在强噪声条件下依然能够稳... 用于提取滚动轴承故障周期冲击特征的最小相关广义Lp/Lq范数反卷积(MCG-Lp/Lq-D)存在对先验周期参数的精确度要求过高的问题。因此有必要提出一种新的周期估计方法-具有约束的自适应周期估计(APEC),该方法可以在强噪声条件下依然能够稳定的给出周期信息的真实估计或其近似值,随后将APEC引入到MCG-Lp/Lq-D构造了新的盲解卷积算法EMCG-Lp/Lq-D,该方法不仅能在强噪声条件下通过APEC自适应调整故障周期,同时还继承了MCG-Lp/Lq-D对噪声和异常值鲁棒的特点。由于APEC是一种需要先验周期(不要求精确周期)指导的周期估计方法,这使得其在低信噪比(SNR)条件下具有更好的鲁棒性来估计故障周期,从而使EMCG-Lp/Lq-D的运用范围相较于MCG-Lp/Lq-D的更广泛。最后,仿真和实验验证了EMCG-Lp/Lq-D的有效性和优越性。 展开更多
关键词 最大相关峭度反卷积 自适应故障周期估计 故障诊断 机器状态监测 局部故障
下载PDF
基于优化VMD-MCKD和谱峭度的滚动轴承复合故障诊断
11
作者 王富珂 高丙朋 《机床与液压》 北大核心 2024年第19期196-202,共7页
针对滚动轴承振动信号中复合故障特征难以准确提取而导致故障诊断困难的问题,提出一种基于优化变分模态分解(VMD)和最大相关峭度解卷积(MCKD)结合快速谱峭度算法的滚动轴承复合故障诊断方法。利用改进麻雀搜索算法(ISSA)优化VMD和MCKD... 针对滚动轴承振动信号中复合故障特征难以准确提取而导致故障诊断困难的问题,提出一种基于优化变分模态分解(VMD)和最大相关峭度解卷积(MCKD)结合快速谱峭度算法的滚动轴承复合故障诊断方法。利用改进麻雀搜索算法(ISSA)优化VMD和MCKD的参数,使用优化后的VMD对复合故障信号进行分解,并根据峭度准则筛选有效本征模态函数(IMF)进行信号重构,使用优化后的MCKD对重构信号进行解卷积与故障特征增强,并对解卷积信号进行包络谱分析提取故障特征频率。利用快速谱峭度算法对未提取出故障特征频率的解卷积信号进行处理,得到故障信息最丰富的频带参数并进行带通滤波处理。最后,对滤波后的信号进行包络谱分析,提取故障特征频率,从而实现故障诊断。仿真及实验结果表明:所提方法能有效分离复合故障并提取出故障特征频率,有效实现了复合故障诊断。 展开更多
关键词 复合故障 变分模态分解 最大相关峭度解卷积 快速谱峭度 改进麻雀搜索算法
下载PDF
基于参数自适应的RSSD-CYCBD及在轴承外圈故障特征提取中的应用
12
作者 刘晖 姚德臣 +1 位作者 杨建伟 魏明辉 《机电工程》 CAS 北大核心 2024年第5期836-844,共9页
针对滚动轴承工作环境复杂、故障特征信号易被高强度噪声掩盖的问题,提出了基于参数自适应的共振稀疏分解(RSSD)和最大二阶循环平稳盲解卷积(CYCBD)的滚动轴承故障诊断方法。首先,利用人工大猩猩部队优化算法(GTO),结合相关系数与相关... 针对滚动轴承工作环境复杂、故障特征信号易被高强度噪声掩盖的问题,提出了基于参数自适应的共振稀疏分解(RSSD)和最大二阶循环平稳盲解卷积(CYCBD)的滚动轴承故障诊断方法。首先,利用人工大猩猩部队优化算法(GTO),结合相关系数与相关峭度的融合指标,自适应选择RSSD分解参数,得到了仿真信号的最优低共振分量;然后,利用GTO结合包络熵,自适应选择CYCBD的循环频率和滤波器长度,对最优低共振分量进行了解卷积运算,从包络谱中获得了信号的故障特征频率;最后,利用美国凯斯西储大学试验台和MFS-MG机械故障综合模拟试验台数据,综合验证了该方法的有效性,并将试验结果与RSSD-MCKD方法的结果进行了对比。研究结果表明,该方法能够准确地得到仿真信号的故障频率为20 Hz、美国凯斯西储大学试验台近似故障频率为107.5 Hz、MFS-MG试验台近似故障频率为87.6 Hz。自适应RSSD-CYCBD方法能够有效地识别出故障特征频率及其倍频,实现滚动轴承故障诊断的目的。 展开更多
关键词 滚动轴承 故障诊断 共振稀疏分解 最大二阶循环平稳盲反卷积 人工大猩猩部队优化算法 包络熵 高强度噪声
下载PDF
基于MOBWO-MCKD的风机滚动轴承故障特征提取方法 被引量:1
13
作者 霍忠堂 高建松 张丁丁 《机电工程》 北大核心 2024年第1期123-129,共7页
针对风力发电机轴承振动信号受强背景噪声及其他设备激励源影响,导致早期微弱故障特征不易提取这一问题,提出了一种基于多目标白鲸优化算法(MOBWO)优化的最大相关峰度反卷积(MCKD)风力发电机轴承故障特征提取方法。首先,采用MOBWO强大... 针对风力发电机轴承振动信号受强背景噪声及其他设备激励源影响,导致早期微弱故障特征不易提取这一问题,提出了一种基于多目标白鲸优化算法(MOBWO)优化的最大相关峰度反卷积(MCKD)风力发电机轴承故障特征提取方法。首先,采用MOBWO强大的全局及局部搜索能力优化了MCKD关键参数,获取了最佳参数组合;其次,利用优化后的MCKD对原始信号进行了解卷积运算,消除了背景噪声及其他设备激励源的影响,突出了轴承周期性脉冲信号;然后对解卷积信号进行了包络谱分析,提取了轴承故障特征频率,并将其与理论计算故障特征频率值进行了诊断结果对比;最后,采用实际工程中采集到的风力发电机轴承内圈和外圈的故障数据,对MOBWO-MCKD方法的有效性进行了试验验证。研究结果表明:基于MOBWO-MCKD的故障特征提取方法能够有效地消除背景噪声及其他设备激励源的干扰;由内圈信号包络谱可得到的内圈故障频率为f IR=125.87 Hz、2f IR=251.74 Hz;由外圈信号包络谱可得到的外圈故障频率为f OR=84.47 Hz、2f OR=168.94 Hz、3f OR=253.41 Hz。该特征提取方法可以为实际工程风力发电机轴承早期微弱故障特征提取研究提供一定的参考。 展开更多
关键词 风机轴承 多目标白鲸优化算法 最大相关峰度反卷积 滚动轴承内圈 轴承外圈 包络分析
下载PDF
基于自适应参数优化RSSD-CYCBD的行星齿轮箱复合故障诊断
14
作者 孙环宇 杨志鹏 +1 位作者 王艺玮 郭琦 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第10期3139-3150,共12页
针对行星齿轮箱多振源耦合导致故障源辨识困难、较弱故障特征容易被噪声和较强故障特征掩盖,以及由传播路径引起的信号衰减导致的故障特征微弱等问题,提出一种自适应参数优化的共振稀疏分解(RSSD)和最大二阶循环平稳盲解卷积(CYCBD)的... 针对行星齿轮箱多振源耦合导致故障源辨识困难、较弱故障特征容易被噪声和较强故障特征掩盖,以及由传播路径引起的信号衰减导致的故障特征微弱等问题,提出一种自适应参数优化的共振稀疏分解(RSSD)和最大二阶循环平稳盲解卷积(CYCBD)的行星齿轮箱多故障耦合信号分离及诊断算法。根据轴承和齿轮故障的不同共振属性,用RSSD算法将多故障耦合信号分解为包含齿轮故障特征的高共振分量和主要包含轴承故障特征的低共振分量后,通过CYCBD算法分别对高、低分量进行解卷积,消除传播路径影响和噪声干扰,实现微弱故障特征的增强和提取。特别地,针对RSSD和CYCBD中参数优化困难、依赖人工经验和自适应差等问题,使用基于松鼠算法(SSA)对参数进行自适应优化选取,设计了融合包络谱峭度、自相关函数最大值均方根和特征频率比在内的复合指标作为优化目标。对解卷积后的信号进行包络解调提取故障特征频率,识别不同故障源。通过行星齿轮箱多故障模拟信号和实测信号验证了所提算法的有效性和可行性,进一步地,将所提算法集成在边缘计算设备中,为行星齿轮箱等旋转机械的状态检测诊断及远程运维提供解决方案。 展开更多
关键词 多源故障分离 共振稀疏分解 最大二阶循环平稳盲解卷积 松鼠算法 行星齿轮箱
下载PDF
基于MCKD的海上风机齿轮箱轴承故障诊断方法
15
作者 郭奇 祁雷 +2 位作者 赵杨 徐晴晴 刘浩 《油气田地面工程》 2024年第6期62-67,72,共7页
海上风机齿轮箱结构复杂、故障多发,同时受海上风机运行的强噪声干扰,轴承故障的特征信号提取较为困难。针对以上问题,提出了一种基于最大相关峭度解卷积(MCKD)的故障诊断方法,通过MCKD算法对振动信号进行降噪处理和特征增强,并利用增... 海上风机齿轮箱结构复杂、故障多发,同时受海上风机运行的强噪声干扰,轴承故障的特征信号提取较为困难。针对以上问题,提出了一种基于最大相关峭度解卷积(MCKD)的故障诊断方法,通过MCKD算法对振动信号进行降噪处理和特征增强,并利用增强包络谱对轴承的故障特征频率进行提取,从而实现对轴承的故障诊断。将该方法应用到海上风机齿轮箱轴承的模拟信号和实测信号中,研究结果表明:该方法对海上强噪声环境下齿轮箱轴承故障的特征提取和诊断具有良好的效果。 展开更多
关键词 海上风机齿轮箱 轴承 故障诊断 最大相关峭度解卷积 增强包络谱
下载PDF
基于局部能量密度的中介轴承故障特征提取与诊断方法
16
作者 栾孝驰 郝冠丞 +2 位作者 沙云东 张振鹏 赵奉同 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第5期239-250,共12页
针对航空发动机中介轴承振动信号在复杂传递路径和强背景噪声条件下的故障特征提取难题,本文提出了一种基于局部能量密度(LED)的中介轴承故障特征提取与诊断方法。首先,采用奇异谱分析对故障信号进行初步的降噪处理,并通过基于余弦值的... 针对航空发动机中介轴承振动信号在复杂传递路径和强背景噪声条件下的故障特征提取难题,本文提出了一种基于局部能量密度(LED)的中介轴承故障特征提取与诊断方法。首先,采用奇异谱分析对故障信号进行初步的降噪处理,并通过基于余弦值的方法确定最优的重构阶次,以保留信号中的关键故障信息。接着,引入新指标LED,用于量化故障特征频率及其谐波在局部频率范围内的能量比例。该指标不仅能有效提取微弱的故障特征,而且对于实际故障频率与理论故障频率之间可能存在的偏差表现出较强的鲁棒性。以LED作为适应度函数,通过人工蜂鸟算法优化的最大相关峭度解卷积(MCKD)增强奇异谱分析降噪后信号中的故障特征。最后,通过包络谱分析完成故障诊断。本文通过中介轴承故障模拟实验和加噪实验验证了所提方法的有效性,实验结果表明,与现有的故障诊断技术相比,本文所提出的方法的故障特征系数(FFC)和LED分别增加20.7%~218%和22.9%~134%。在0 dB,-4 dB和-10 dB噪声条件下,该方法仍准确地识别到外圈故障的特征频率及倍频,表明所提出的SSA_MCKD能有效降低信号噪声并提取滚动轴承的故障特征。 展开更多
关键词 中介轴承 奇异谱分析 最大相关峭度解卷积 局部能量密度 人工蜂鸟算法 故障诊断
下载PDF
基于参数优化VMD-MCKD的滚动轴承早期故障诊断
17
作者 陶翰铭 张栋良 +1 位作者 吴坤鹏 吴杰 《噪声与振动控制》 CSCD 北大核心 2024年第6期156-164,共9页
针对滚动轴承早期故障特征易受强背景噪声影响而难以提取的问题,提出一种基于阿基米德算法(Archimedes Optimization Algorithm,AOA)优化变分模态分解(Variational Mode Decomposition,VMD)和相关最大峭度解卷积(Maximum Correlated Kur... 针对滚动轴承早期故障特征易受强背景噪声影响而难以提取的问题,提出一种基于阿基米德算法(Archimedes Optimization Algorithm,AOA)优化变分模态分解(Variational Mode Decomposition,VMD)和相关最大峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)参数的滚动轴承故障诊断方法。首先,将不同移位数下相关峭度和现有指标进行对比,选取最优相关峭度指标作为目标函数优化VMD算法中分解层数K和惩罚因子,并基于VMD分解结果选取最优分量;其次,提出一种加权包络谱峭度作为目标函数优化MCKD算法中滤波器长度L和冲击信号周期T,基于MCKD算法增强最优分量中的冲击成分;最后,通过包络谱分析判断滚动轴承故障类型。仿真和试验结果表明,该方法可以有效提取并增强故障中的冲击成分,实现在强背景噪声下的滚动轴承早期故障诊断。 展开更多
关键词 故障诊断 滚动轴承 阿基米德算法 变分模态分解 最大相关峭度解卷积
下载PDF
基于振动与声发射敏感参数识别的主轴承故障诊断方法
18
作者 栾孝驰 佟鑫宇 +2 位作者 沙云东 陈兴武 郭小鹏 《推进技术》 EI CAS CSCD 北大核心 2024年第12期269-281,共13页
针对航空发动机主轴承故障特征信息提取困难的问题,提出了一种基于声发射特征参数与多参数筛选的小波包变换(MFSWPD)-粒子群优化算法(PSO)-最大相关峭度反卷积(MCKD)融合的轴承故障诊断方法。该方法通过声发射参数判断轴承状态并通过小... 针对航空发动机主轴承故障特征信息提取困难的问题,提出了一种基于声发射特征参数与多参数筛选的小波包变换(MFSWPD)-粒子群优化算法(PSO)-最大相关峭度反卷积(MCKD)融合的轴承故障诊断方法。该方法通过声发射参数判断轴承状态并通过小波包变换获得节点分量,针对分量进行筛选重构,再通过粒子群迭代优化的自适应最大相关峭度反卷积进行故障诊断。为验证该方法的有效性,开展某型双转子航空发动机主轴承故障模拟试验及某型涡扇发动机主轴承真实剥落故障试验,并在试验正式开始前进行断铅试验,检验轴承损伤点到测试点之间的声发射幅值衰减特性。结果表明:声发射断铅信号从轴承损伤位置到测试点位置幅值衰减约为55 dB。基于声发射与振动敏感参数的轴承故障诊断方法可有效提高故障信息的特征提取能力,精准判别主轴承的典型故障类型。 展开更多
关键词 航空发动机 主轴承 故障诊断 敏感参数特征识别 粒子群优化算法 最大相关峭度反卷积
下载PDF
基于SVMD与参数优化MCKD的轴承故障诊断
19
作者 钟先友 何流 赵潇 《机电工程》 CAS 北大核心 2024年第7期1179-1188,共10页
针对轴承故障信号存在噪声干扰,难以提取故障特征的问题,提出了一种将连续变分模态分解(SVMD)与改进的最大相关峭度反卷积(MCKD)相结合的轴承故障诊断方法。首先,为了表征轴承振动信号中的故障特征,将峭度与高斯核相结合,提出了比峭度... 针对轴承故障信号存在噪声干扰,难以提取故障特征的问题,提出了一种将连续变分模态分解(SVMD)与改进的最大相关峭度反卷积(MCKD)相结合的轴承故障诊断方法。首先,为了表征轴承振动信号中的故障特征,将峭度与高斯核相结合,提出了比峭度指标更为突出的加权峭度指标;其次,利用SVMD方法对轴承信号进行了分解,获得了若干模态分量,并使用加权峭度指标从多个模态分量中筛选出了故障特征最丰富的模态分量;然后,以包络熵为标准,通过几何平均优化器(GMO)优化MCKD的滤波器长度和周期两个参数,获得了最佳的参数组合;最后,采用GMO-MCKD方法对轴承信号进行了降噪,对降噪后的信号进行了包络分析,提取了轴承特征频率;同时,采用粒子群优化(PSO)的变分模态分解(VMD)和粒子群优化的变分模态提取(VME),对轴承信号进行了对照分析。研究结果表明:采用SVMD-GMO-MCKD方法在辛辛那提数据集中诊断出轴承特征频率为234.4 Hz及其二倍频;在西储大学轴承数据集中诊断出轴承特征频率为108.96 Hz,二倍频为218.09 Hz。该方法可以增强滚动轴承的周期性冲击成分,在有干扰的背景下有效地提取出滚动轴承内圈和外圈的故障特征,且轴承故障特征提取效果优于PSO-VMD和PSO-VME方法。 展开更多
关键词 噪声干扰 连续变分模态分解 最大相关峭度反卷积 几何平均优化器 故障特征提取效果 轴承特征频率
下载PDF
基于小波包分解和MCKD的水泵轴承故障诊断方法
20
作者 蒋辉 邱露鹏 蒋强 《沈阳理工大学学报》 CAS 2024年第2期38-44,共7页
针对水泵在实际应用中所处环境复杂、故障信号包含大量噪声难以提取的问题,提出了一种结合小波包分解和最大相关峭度解卷积(MCKD)的水泵轴承故障诊断方法。首先,应用小波包分解对原始信号进行分解,根据分解信号的信噪比和标准差选取合... 针对水泵在实际应用中所处环境复杂、故障信号包含大量噪声难以提取的问题,提出了一种结合小波包分解和最大相关峭度解卷积(MCKD)的水泵轴承故障诊断方法。首先,应用小波包分解对原始信号进行分解,根据分解信号的信噪比和标准差选取合适的分量进行重构;然后,采用MCKD算法对重构信号降噪处理,突出信号中的有效周期冲击成分;最后,对处理好的信号进行包络谱分析,从包络谱中得到故障频率。实验结果表明,小波包分解和MCKD方法能够有效提取水泵轴承故障特征频率,可为工程实际应用提供参考。 展开更多
关键词 最大相关峭度解卷积 小波包分解 故障诊断 轴承
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部