Wavelet has rapid development in the current mathematics new areas. It also has a double meaning of theory and application. In signal and image compression, signal analysis, engineering technology has a wide range of ...Wavelet has rapid development in the current mathematics new areas. It also has a double meaning of theory and application. In signal and image compression, signal analysis, engineering technology has a wide range of applications. In this paper, we use wavelet method, for estimating the density function for censoring data. We evaluate the mean integrated squared error, convergence ratio of given estimator. Also, we obtain empirical distribution of given estimator and verify the conclusion by two simulation examples.展开更多
In this paper we consider lim _(R-) B_R^(f,x_0), in one case that f_x_0 (t) is a ABMV function on [0, ∞], and in another case that f∈L_(m-1)~1(R~) and x^k/~kf∈BV(R) when |k| = m-1 and f(x) = 0 when |x -x_0|<δ f...In this paper we consider lim _(R-) B_R^(f,x_0), in one case that f_x_0 (t) is a ABMV function on [0, ∞], and in another case that f∈L_(m-1)~1(R~) and x^k/~kf∈BV(R) when |k| = m-1 and f(x) = 0 when |x -x_0|<δ for some δ>0. Our theormes improve the results of Pan Wenjie ([1]).展开更多
In this paper, we present a basic theory of mean-square almost periodicity, apply the theory in random differential equation, and obtain mean-square almost periodic solution of some types stochastic differential equat...In this paper, we present a basic theory of mean-square almost periodicity, apply the theory in random differential equation, and obtain mean-square almost periodic solution of some types stochastic differential equation.展开更多
We give the conditionally residual h-integrability with exponent r for an array of random variables and establish the conditional mean convergence of conditionally negatively quadrant dependent and conditionally negat...We give the conditionally residual h-integrability with exponent r for an array of random variables and establish the conditional mean convergence of conditionally negatively quadrant dependent and conditionally negative associated random variables under this integrability. These results generalize and improve the known ones.展开更多
文摘Wavelet has rapid development in the current mathematics new areas. It also has a double meaning of theory and application. In signal and image compression, signal analysis, engineering technology has a wide range of applications. In this paper, we use wavelet method, for estimating the density function for censoring data. We evaluate the mean integrated squared error, convergence ratio of given estimator. Also, we obtain empirical distribution of given estimator and verify the conclusion by two simulation examples.
文摘In this paper we consider lim _(R-) B_R^(f,x_0), in one case that f_x_0 (t) is a ABMV function on [0, ∞], and in another case that f∈L_(m-1)~1(R~) and x^k/~kf∈BV(R) when |k| = m-1 and f(x) = 0 when |x -x_0|<δ for some δ>0. Our theormes improve the results of Pan Wenjie ([1]).
文摘In this paper, we present a basic theory of mean-square almost periodicity, apply the theory in random differential equation, and obtain mean-square almost periodic solution of some types stochastic differential equation.
基金Acknowledgements The authors thank Editor Lu and two anonymous referees for their constructive suggestions and comments which helped in significantly improving an earlier version of this paper. This work is supported by the National Natural Science Foundation of China (11171001, 11201001, 11426032), the Natural Science Foundation of Anhui Province (1308085QA03, 1408085QA02), the Science Fund for Distinguished Young Scholars of Anhui Province (1508085J06), and Introduction Projects of Anhui University Academic and Technology Leaders.
文摘We give the conditionally residual h-integrability with exponent r for an array of random variables and establish the conditional mean convergence of conditionally negatively quadrant dependent and conditionally negative associated random variables under this integrability. These results generalize and improve the known ones.