Three long-term fixed acoustic Doppler current profilers were first used for investigating the vertical structure of tidal currents in Xuliujing Section of Changjiang River Estuary.Moreover,three different periods(spr...Three long-term fixed acoustic Doppler current profilers were first used for investigating the vertical structure of tidal currents in Xuliujing Section of Changjiang River Estuary.Moreover,three different periods(spring,summer and fall)were also considered for investigating seasonal variations.The semi-diurnal tides were the most energetic,with along-channel speed of up to 80 cm/s for M_(2)constituent,which dominates at all stations with percent energy up to 65%–75%during seasons.The shape of tidal ellipses of the most energetic semi-diurnal constituent M_(2)showed obvious polarization of the flow paralleling to the riverbank,with the minor semi-axis being generally less than 20%of the major one.The maximum velocity of mean current is appeared in top layers at all the three stations,and the velocity decreased with the depth.The seasonal variations of direction are also observed,which is probably caused by complex local topography since the erosion and deposition in riverbed.Observed vertical variation of four parameters of M_(2)ellipses,agreed well with the optimally fit frictional solutions in top and middle layers.However,there was an obvious difference between frictional model and observed data in the lower water column.Discrepancies are probably on account of stratification,which strengthens in summer and fall due to the freshening influence of the Changjiang River Estuary outflow.展开更多
Several bottom-mounted Acoustic Doppler Current Profiler (ADCP) moorings were deployed in the northern Yellow Sea (NYS) during the four seasons of 2006–2007 and also the summertime of 2009. A synthesis analysis on th...Several bottom-mounted Acoustic Doppler Current Profiler (ADCP) moorings were deployed in the northern Yellow Sea (NYS) during the four seasons of 2006–2007 and also the summertime of 2009. A synthesis analysis on the time-continuous records was performed to examine the characteristics and variations of tidal currents and mean flow over the observation period at these stations. Tidal currents accounted for ~75% of the total kinetic energy, with the absolute dominance of M2 constituent. Visible vertical variations of tidal flow were found on all sites, featured by the decrease of amplitude, increase of rotation rate as well as a decreasing trend of the phase for M2 component with depth. A notable exception was in the central NYS, where the maximum tidal currents occurred in the upper or middle layers (~20–40 m) instead of near the surface (<10 m). The observed mean flow was relatively weak, smaller than 15 cm/s. Velocity on the northern end of Yellow Sea Trough (YST) was characterized by low magnitude and an obvious layered structure vertically. In the Bohai Strait (BS) and the northern slope area, the currents weakened and the flow direction presented a major trend to deflect counterclockwise with depth in most observations. Summertime cyclonic circulation around the Yellow Sea Cold Water Mass (YSCWM), its intensification on the frontal zone and the Yellow Sea Warm Current (YSWC) for the winter season were all evident by our direct current measurements. However, the details of water exchange through the BS appeared partly diff erent from the traditionally-accepted pattern. The vertical diff erences of tidal and mean flow were larger in summer than that in winter, implying the influence of thermal structure to the local currents. Aff ected by the water stratification, mean flow usually reached its maximum near the thermocline in spring and summer, while showing a nearly uniform vertical distribution during winter.展开更多
Given an integral M-currrent To in Rm+k and a tensor H of type(m.l)on Rn+k with values orthogonal to each of its arguments we proved in a previous peper[3]the sxistence of anintegral m-current T =γ(M,θ.ζ)with bound...Given an integral M-currrent To in Rm+k and a tensor H of type(m.l)on Rn+k with values orthogonal to each of its arguments we proved in a previous peper[3]the sxistence of anintegral m-current T =γ(M,θ.ζ)with boundary T0 and mean curvature vector H by minimizing an appropriate functional on suitable subclasses of the set of all integral currents.In thes paperwe discuss the existence and structure of oriented tangent cones C of T at points x∈spt(T) spt(T),especially we show that C is locally mass minimizing.展开更多
A new method of fault domain identification is proposed based on K-means clustering analysis theories using the wide-area information of power grid. In the method, the node Intelligent Electronic Device (IED) associat...A new method of fault domain identification is proposed based on K-means clustering analysis theories using the wide-area information of power grid. In the method, the node Intelligent Electronic Device (IED) associated domain is defined, and the relationship of positive sequence current fault component for the association domain boundaries is sought, then the conception of positive sequence fault component differential current for node IED association domains is introduced. The information of the positive sequence fault component differential current gathered by node IEDs is selected as the object of K-means clustering. The node IEDs of fault associated domains can be classified into one category, and the node IEDs of non-fault associated domains are classified into another category. With the fault area minimum principle, the group of node IEDs about fault associated domains can be obtained. The overlap of fault associated domains for different nodes is the fault area. A large number of simulations show that the algorithm proposed can identify fault domains with high accuracy and no influence by the operating mode of the system and topological changes.展开更多
The interaction between waves, currents and bottoms in estuarine and coastal regions is ubiquitious, in particular the dynamic mechanism of waves on large-scale slowly varying currents. The wave action concept may be ...The interaction between waves, currents and bottoms in estuarine and coastal regions is ubiquitious, in particular the dynamic mechanism of waves on large-scale slowly varying currents. The wave action concept may be extended and applicated to the study of the mechanism. Considering the effects of moving bottoms and starting from the Navier-Stokes equation of motion of a vinous fluid including the Coriolis force, a generalized mean-flow medel theory for the nearshore region, that is, a set of mean-flow equations and their generalized wave action equation involving the three new kinds of actions termed respectively as the current wave action, the bottom wave action and the dissipative wave action which can be applied to arbitrary depth over moving bottoms and ambient currents with a typical vertical structure, is developed by vertical integration and time-averaglng over a wave peried, thus extending the classical concept, wave action, from the ideal averaged flow conservative system to the real averaged flow dissipative dynamical system, and having a large range of application.展开更多
The characteristics of current in the Bering Strait and the Chukchi Sea areanalyzed based on the two current data on the mooring stations during the Second National ArcticResearch Expedition of China in 2003. The tida...The characteristics of current in the Bering Strait and the Chukchi Sea areanalyzed based on the two current data on the mooring stations during the Second National ArcticResearch Expedition of China in 2003. The tidal currents of the principal diurnal and semidiurnalellipses rotate clockwise in the upper layer, except for N_2, S_2, and Q_1 at Sta. ST. In the BeringStrait (Sta. ST), the major semi-axis of tidal current constituent M_2 is 2.9 cm/s in the upperlayer, which is much smaller than that of semi-monthly oscillation (11.8 cm/s); and the mean currentflows northwestward at the amplitude of about 20 cm/s and varies a little with depth. During thecruise, the current has significant semi-monthly oscillation at the two mooring stations. Thespectra analyses of the air pressure gradient and the wind stress show that there are thesemi-monthly oscillations in these two data series. The near-inertial current, approximately 4 cm/s,presents almost the same magnitude of the principal tidal currents in the Bering Strait.展开更多
为诊断高压断路器操作机构故障,文中基于分合闸线圈电流曲线,提出了采用K-means与SOM神经网络相结合的混合算法,对断路器操作机构进行状态评估。对某批次252 k V高压断路器操作机构进行分合闸线圈电流数据采集;建立了K-means与SOM神经...为诊断高压断路器操作机构故障,文中基于分合闸线圈电流曲线,提出了采用K-means与SOM神经网络相结合的混合算法,对断路器操作机构进行状态评估。对某批次252 k V高压断路器操作机构进行分合闸线圈电流数据采集;建立了K-means与SOM神经网络相结合的混合算法模型;对测试的断路器操作机构进行状态分析。结果表明,混合算法能够将操作机构不同状态进行聚类,可将相同故障分在同一类别。并将混合算法模型与SOM神经网络模型和K-means模型作比较,结果表明,混合算法模型在计算速度和聚类准确率上都优于其他两种模型。展开更多
对双主动全桥DAB(dual active bridge)双向DC/DC变换器的调制方案进行了研究,DAB变换器的主要优势在于具有对称结构、双向潮流能力、宽软开关区域和灵活的控制能力等特点。控制这种拓扑结构最简单的方法是通过控制变换器原副边全桥之间...对双主动全桥DAB(dual active bridge)双向DC/DC变换器的调制方案进行了研究,DAB变换器的主要优势在于具有对称结构、双向潮流能力、宽软开关区域和灵活的控制能力等特点。控制这种拓扑结构最简单的方法是通过控制变换器原副边全桥之间的移相角来控制功率传输的方向和大小。然而在轻载条件下,当变换器的输入或输出电压变化较大时,会产生大量的无功功率,同时部分开关管的零电压开关ZVS(zero voltage switching)操作会丢失而直接导致转换效率变低。因此,为了提高DAB变换器的效率,提出了一种混合单移相调制PSM(phase shift modulation)方案,在保持控制简单的基础上,通过减小电感电流有效值,扩大软开关的范围,提高了变换器的效率。首先,通过让拓展移相EPS(extended phase shift)、双移相DPS(dual phase shift)以及三移相TPS(triple phase shift)调制方案中的可控变量相等,从而形成了4种不同的PSM方案。接着,对这些调制方案进行了稳态特征的比较分析,包括传输功率容量、电感电流水平以及软开关性能等。在此基础上,提出了一种混合PSM方案。最后,通过搭建实验平台验证了所提出调制方案的有效性和正确性。展开更多
基金The National Natural Science Foundation of China under contract Nos 41806114 and 42266006the Jiangxi Provincial Natural Science Foundation under contract Nos 20202ACBL214019,20181BAB216031 and 20212BBE53031+2 种基金the Technological Innovation and Application Development in Chongqing under contract No.CSTB2022TIAD-GPX0016the Incentive and Guidance Project of Scientific Research Performance for Scientific Research Institutes in Chongqing under contract No.cstc2021jxjl120017the Open Fund of the Key Laboratory of Marine Environmental Survey Technology and Application of Ministry of Natural Resources under contract Nos MESTA-2020-A002 and MESTA-2021-B001.
文摘Three long-term fixed acoustic Doppler current profilers were first used for investigating the vertical structure of tidal currents in Xuliujing Section of Changjiang River Estuary.Moreover,three different periods(spring,summer and fall)were also considered for investigating seasonal variations.The semi-diurnal tides were the most energetic,with along-channel speed of up to 80 cm/s for M_(2)constituent,which dominates at all stations with percent energy up to 65%–75%during seasons.The shape of tidal ellipses of the most energetic semi-diurnal constituent M_(2)showed obvious polarization of the flow paralleling to the riverbank,with the minor semi-axis being generally less than 20%of the major one.The maximum velocity of mean current is appeared in top layers at all the three stations,and the velocity decreased with the depth.The seasonal variations of direction are also observed,which is probably caused by complex local topography since the erosion and deposition in riverbed.Observed vertical variation of four parameters of M_(2)ellipses,agreed well with the optimally fit frictional solutions in top and middle layers.However,there was an obvious difference between frictional model and observed data in the lower water column.Discrepancies are probably on account of stratification,which strengthens in summer and fall due to the freshening influence of the Changjiang River Estuary outflow.
基金Supported by the State Key Program of National Natural Science of China(Nos.41430963,U1706215)the National Science Foundation for Young Scientists of China(No.41506012)
文摘Several bottom-mounted Acoustic Doppler Current Profiler (ADCP) moorings were deployed in the northern Yellow Sea (NYS) during the four seasons of 2006–2007 and also the summertime of 2009. A synthesis analysis on the time-continuous records was performed to examine the characteristics and variations of tidal currents and mean flow over the observation period at these stations. Tidal currents accounted for ~75% of the total kinetic energy, with the absolute dominance of M2 constituent. Visible vertical variations of tidal flow were found on all sites, featured by the decrease of amplitude, increase of rotation rate as well as a decreasing trend of the phase for M2 component with depth. A notable exception was in the central NYS, where the maximum tidal currents occurred in the upper or middle layers (~20–40 m) instead of near the surface (<10 m). The observed mean flow was relatively weak, smaller than 15 cm/s. Velocity on the northern end of Yellow Sea Trough (YST) was characterized by low magnitude and an obvious layered structure vertically. In the Bohai Strait (BS) and the northern slope area, the currents weakened and the flow direction presented a major trend to deflect counterclockwise with depth in most observations. Summertime cyclonic circulation around the Yellow Sea Cold Water Mass (YSCWM), its intensification on the frontal zone and the Yellow Sea Warm Current (YSWC) for the winter season were all evident by our direct current measurements. However, the details of water exchange through the BS appeared partly diff erent from the traditionally-accepted pattern. The vertical diff erences of tidal and mean flow were larger in summer than that in winter, implying the influence of thermal structure to the local currents. Aff ected by the water stratification, mean flow usually reached its maximum near the thermocline in spring and summer, while showing a nearly uniform vertical distribution during winter.
文摘Given an integral M-currrent To in Rm+k and a tensor H of type(m.l)on Rn+k with values orthogonal to each of its arguments we proved in a previous peper[3]the sxistence of anintegral m-current T =γ(M,θ.ζ)with boundary T0 and mean curvature vector H by minimizing an appropriate functional on suitable subclasses of the set of all integral currents.In thes paperwe discuss the existence and structure of oriented tangent cones C of T at points x∈spt(T) spt(T),especially we show that C is locally mass minimizing.
文摘A new method of fault domain identification is proposed based on K-means clustering analysis theories using the wide-area information of power grid. In the method, the node Intelligent Electronic Device (IED) associated domain is defined, and the relationship of positive sequence current fault component for the association domain boundaries is sought, then the conception of positive sequence fault component differential current for node IED association domains is introduced. The information of the positive sequence fault component differential current gathered by node IEDs is selected as the object of K-means clustering. The node IEDs of fault associated domains can be classified into one category, and the node IEDs of non-fault associated domains are classified into another category. With the fault area minimum principle, the group of node IEDs about fault associated domains can be obtained. The overlap of fault associated domains for different nodes is the fault area. A large number of simulations show that the algorithm proposed can identify fault domains with high accuracy and no influence by the operating mode of the system and topological changes.
基金This paper was supported bythe Foundationforthe Author of National Excellent Doctoral Dissertation of P.R.China(Grant No.200428) the National Natural Science Foundation of China (Grant Nos .10272072 and 50424913) +1 种基金theShanghai Natural Science Foundation (Grant No.05ZR14048) the Shanghai Leading Academic Discipline Pro-ject (Grant No. Y0103)
文摘The interaction between waves, currents and bottoms in estuarine and coastal regions is ubiquitious, in particular the dynamic mechanism of waves on large-scale slowly varying currents. The wave action concept may be extended and applicated to the study of the mechanism. Considering the effects of moving bottoms and starting from the Navier-Stokes equation of motion of a vinous fluid including the Coriolis force, a generalized mean-flow medel theory for the nearshore region, that is, a set of mean-flow equations and their generalized wave action equation involving the three new kinds of actions termed respectively as the current wave action, the bottom wave action and the dissipative wave action which can be applied to arbitrary depth over moving bottoms and ambient currents with a typical vertical structure, is developed by vertical integration and time-averaglng over a wave peried, thus extending the classical concept, wave action, from the ideal averaged flow conservative system to the real averaged flow dissipative dynamical system, and having a large range of application.
基金supported by the project of the National Nataral Science Foundation of China under contract Nos 40506006,40376007,40306005,40376005 and NCET-04-0646.
文摘The characteristics of current in the Bering Strait and the Chukchi Sea areanalyzed based on the two current data on the mooring stations during the Second National ArcticResearch Expedition of China in 2003. The tidal currents of the principal diurnal and semidiurnalellipses rotate clockwise in the upper layer, except for N_2, S_2, and Q_1 at Sta. ST. In the BeringStrait (Sta. ST), the major semi-axis of tidal current constituent M_2 is 2.9 cm/s in the upperlayer, which is much smaller than that of semi-monthly oscillation (11.8 cm/s); and the mean currentflows northwestward at the amplitude of about 20 cm/s and varies a little with depth. During thecruise, the current has significant semi-monthly oscillation at the two mooring stations. Thespectra analyses of the air pressure gradient and the wind stress show that there are thesemi-monthly oscillations in these two data series. The near-inertial current, approximately 4 cm/s,presents almost the same magnitude of the principal tidal currents in the Bering Strait.
文摘为诊断高压断路器操作机构故障,文中基于分合闸线圈电流曲线,提出了采用K-means与SOM神经网络相结合的混合算法,对断路器操作机构进行状态评估。对某批次252 k V高压断路器操作机构进行分合闸线圈电流数据采集;建立了K-means与SOM神经网络相结合的混合算法模型;对测试的断路器操作机构进行状态分析。结果表明,混合算法能够将操作机构不同状态进行聚类,可将相同故障分在同一类别。并将混合算法模型与SOM神经网络模型和K-means模型作比较,结果表明,混合算法模型在计算速度和聚类准确率上都优于其他两种模型。