In this paper we investigate the one-dimensional hyperbolic mean curvatureflow for closed plane curves. More precisely, we consider a family of closed curves F : S1 × [0, T ) → R^2 which satisfies the followin...In this paper we investigate the one-dimensional hyperbolic mean curvatureflow for closed plane curves. More precisely, we consider a family of closed curves F : S1 × [0, T ) → R^2 which satisfies the following evolution equation δ^2F /δt^2 (u, t) = k(u, t)N(u, t)-▽ρ(u, t), ∨(u, t) ∈ S^1 × [0, T ) with the initial data F (u, 0) = F0(u) and δF/δt (u, 0) = f(u)N0, where k is the mean curvature and N is the unit inner normal vector of the plane curve F (u, t), f(u) and N0 are the initial velocity and the unit inner normal vector of the initial convex closed curve F0, respectively, and ▽ρ is given by ▽ρ Δ=(δ^2F /δsδt ,δF/δt) T , in which T stands for the unit tangent vector. The above problem is an initial value problem for a system of partial differential equations for F , it can be completely reduced to an initial value problem for a single partial differential equation for its support function. The latter equation is a hyperbolic Monge-Ampere equation. Based on this, we show that there exists a class of initial velocities such that the solution of the above initial value problem exists only at a finite time interval [0, Tmax) and when t goes to Tmax, either the solution convergesto a point or shocks and other propagating discontinuities are generated. Furthermore, we also consider the hyperbolic mean curvature flow with the dissipative terms and obtain the similar equations about the support functions and the curvature of the curve. In the end, we discuss the close relationship between the hyperbolic mean curvature flow and the equations for the evolving relativistic string in the Minkowski space-time R^1,1.展开更多
This article concerns the self-similar solutions to the hyperbolic mean curvature flow (HMCF) for plane curves, which is proposed by Kong, Liu, and Wang and relates to an earlier proposal for general flows by LeFloc...This article concerns the self-similar solutions to the hyperbolic mean curvature flow (HMCF) for plane curves, which is proposed by Kong, Liu, and Wang and relates to an earlier proposal for general flows by LeFloch and Smoczyk. We prove that all curves immersed in the plane which move in a self-similar manner under the HMCF are straight lines and circles. Moreover, it is found that a circle can either expand to a larger one and then converge to a point, or shrink directly and converge to a point, where the curvature approaches to infinity.展开更多
Given a family of smooth immersions of closed hypersurfaces in a locally symmetric Riemannian manifold with bounded geometry, moving by mean curvature flow, we show that at the first finite singular time of mean curva...Given a family of smooth immersions of closed hypersurfaces in a locally symmetric Riemannian manifold with bounded geometry, moving by mean curvature flow, we show that at the first finite singular time of mean curvature flow, certain subcritical quantities concerning the second fundamental form blow up. This result not only generalizes a result of Le-Sesum and Xu-Ye-Zhao, but also extends the latest work of Le in the Euclidean case展开更多
Under the hypothesis of mean curvature flows of hypersurfaces, we prove that the limit of the smooth rescaling of the singularity is weakly convex. It is a generalization of the result due to G.Huisken and C. Sinestra...Under the hypothesis of mean curvature flows of hypersurfaces, we prove that the limit of the smooth rescaling of the singularity is weakly convex. It is a generalization of the result due to G.Huisken and C. Sinestrari in. These apriori bounds are satisfied for mean convex hypersurfaces in locally symmetric Riemannian manifolds with nonnegative sectional curvature.展开更多
First, we review the authors' recent results on translating solutions to mean curvature flows in Euclidean space as well as in Minkowski space, emphasizing on the asymptotic expansion of rotationally symmetric soluti...First, we review the authors' recent results on translating solutions to mean curvature flows in Euclidean space as well as in Minkowski space, emphasizing on the asymptotic expansion of rotationally symmetric solutions. Then we study the sufficient condition for which the translating solution is rotationally symmetric. We will use a moving plane method to show that this condition is optimal for the symmetry of solutions to fully nonlinear elliptic equations without ground state condition.展开更多
Under investigation in this paper is a hyperbolic mean curvature flow for convex evolving curves.Firstly,in view of Lie group analysis,infinitesimal generators,symmetry groups and an optimal system of symmetries of th...Under investigation in this paper is a hyperbolic mean curvature flow for convex evolving curves.Firstly,in view of Lie group analysis,infinitesimal generators,symmetry groups and an optimal system of symmetries of the considered hyperbolic mean curvature flow are presented.At the same time,some group invariant solutions are computed through reduced equations.In particular,we construct explicit solutions by applying the power series method.Furthermore,the convergence of the solutions of power series is certificated.Finally,conservation laws of the hyperbolic mean curvature flow are established via Ibragimov's approach.展开更多
In this paper a flow of convex hypersurfaces in the Euclidean space by the linear-combination of the mean curvature and the n-th root of the Gauss-Kronecker curvature is considered. It is proved that such deforming co...In this paper a flow of convex hypersurfaces in the Euclidean space by the linear-combination of the mean curvature and the n-th root of the Gauss-Kronecker curvature is considered. It is proved that such deforming convex hypersurfaces converge to a round sphere in the Huisken's sense.展开更多
In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piece...In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piecewise smooth boundary,and ℝ denotes the Euclidean 1-space.We prove an interesting stability result for translating spacelike graphs in M^(n)×ℝ under a conformal transformation.展开更多
Recently,Pipoli and Sinestrari[Pipoli,G.and Sinestrari,C.,Mean curvature flow of pinched submanifolds of CPn,Comm.Anal.Geom.,25,2017,799-846]initiated the study of convergence problem for the mean curvature flow of sm...Recently,Pipoli and Sinestrari[Pipoli,G.and Sinestrari,C.,Mean curvature flow of pinched submanifolds of CPn,Comm.Anal.Geom.,25,2017,799-846]initiated the study of convergence problem for the mean curvature flow of small codimension in the complex projective space CPm.The purpose of this paper is to develop the work due to Pipoli and Sinestrari,and verify a new convergence theorem for the mean curvature flow of arbitrary codimension in the complex projective space.Namely,the authors prove that if the initial submanifold in CPm satisfies a suitable pinching condition,then the mean curvature flow converges to a round point in finite time,or converges to a totally geodesic submanifold as t→∞.Consequently,they obtain a differentiable sphere theorem for submanifolds in the complex projective space.展开更多
This paper is devoted to the study of the vortex dynamics of the Cauchy problem for a parabolic Ginzburg Landau system which simulates inhomogeneous type II superconducting materials and three-dimensional superconduct...This paper is devoted to the study of the vortex dynamics of the Cauchy problem for a parabolic Ginzburg Landau system which simulates inhomogeneous type II superconducting materials and three-dimensional superconducting thin films having variable thickness. We will prove that the vortex of the problem is moved by a codimension k mean curvature flow with external force field. Besides, we will show that the mean curvature flow depends strongly on the external force, having completely different phenomena from the usual mean curvature flow.展开更多
In this paper,the mean curvature flow of complete submanifolds in Euclidean space with convex Gauss image and bounded curvature is studied.The confinable property of the Gauss image under the mean curvature flow is pr...In this paper,the mean curvature flow of complete submanifolds in Euclidean space with convex Gauss image and bounded curvature is studied.The confinable property of the Gauss image under the mean curvature flow is proved,which in turn helps one to obtain the curvature estimates.Then the author proves a long time existence result.The asymptotic behavior of these solutions when t→∞is also studied.展开更多
A surface E is a graph in R^4 if there is a unit constant 2-form ω on R^4 such that <e_1∧e_2.ω>≥v_0>0 where{e_1.e_2}is an orthonormal frame on Σ.We prove that.if v_0≥on the initial snrface,then the mean...A surface E is a graph in R^4 if there is a unit constant 2-form ω on R^4 such that <e_1∧e_2.ω>≥v_0>0 where{e_1.e_2}is an orthonormal frame on Σ.We prove that.if v_0≥on the initial snrface,then the mean curvature flow has a global solution and the scaled surfaces converge to a self-similar solution.A surface Σ is a graph in M_1×M_2 where M_1 and M_2 are Riemann surfaces. if<e_1∧e_2.ω>≥v_0>0 where w_1 is a Khler form on M_1.We prove that.if M is a Khler-Einstein surface with scalar curvature R.v_0≥ on the initial surface,then the mean curvature flow has a global solution and it sub-converges to a minimal surface,if.in addition.R≥0 it converges to a totally geodesic surface which is holomorphic.展开更多
This paper proves that any rotationally symmetric translating soliton of mean curvature flow in R3 is strictly convex if it is not a plane and it intersects its symmetric axis at one point. The authors also study the ...This paper proves that any rotationally symmetric translating soliton of mean curvature flow in R3 is strictly convex if it is not a plane and it intersects its symmetric axis at one point. The authors also study the symmetry of any translating soliton of mean curvature flow in Rn.展开更多
We investigate the integral conditions to extend the mean curvature flow in a Riemannian manifold. We prove that the mean curvature flow solution with finite total mean curvature at a finite time interval [0,T) can be...We investigate the integral conditions to extend the mean curvature flow in a Riemannian manifold. We prove that the mean curvature flow solution with finite total mean curvature at a finite time interval [0,T) can be extended over time T. Moreover,we show that the condition is optimal in some sense.展开更多
In this note,we generalize an extension theorem in [Le-Sesum] and [Xu-Ye-Zhao] of the mean curvature flow to the Hk mean curvature flow under some extra conditions.The main difficulty in proving the extension theorem ...In this note,we generalize an extension theorem in [Le-Sesum] and [Xu-Ye-Zhao] of the mean curvature flow to the Hk mean curvature flow under some extra conditions.The main difficulty in proving the extension theorem is to find a suitable version of Michael-Simon inequality for the Hk mean curvature flow,and to do a suitable Moser iteration process.These two problems are overcome by imposing some extra conditions which may be weakened or removed in our forthcoming paper.On the other hand,we derive some estimates for the generalized mean curvature flow,which have their own interesting.展开更多
In this paper,the motion of inverse mean curvature flow which starts from a closed star-sharped hypersurface in special rotationally symmetric spaces is studied.It is proved that the flow converges to a unique geodesi...In this paper,the motion of inverse mean curvature flow which starts from a closed star-sharped hypersurface in special rotationally symmetric spaces is studied.It is proved that the flow converges to a unique geodesic sphere,i.e.,every principle curvature of the hypersurfaces converges to a same constant under the flow.展开更多
In this paper, we introduce and study the conformal mean curvature flow of submanifolds of higher codimension in the Euclidean space R^n. This kind of flow is a special case of a general modified mean curvature flow w...In this paper, we introduce and study the conformal mean curvature flow of submanifolds of higher codimension in the Euclidean space R^n. This kind of flow is a special case of a general modified mean curvature flow which is of various origination. As the main result, we prove a blow-up theorem concluding that, under the conformal mean curvature flow in R^n, the maximum of the square norm of the second fundamental form of any compact submanifold tends to infinity in finite time. Furthermore, we also prove that the external conformal forced mean curvature flow of a compact submanifold in R^n with the same pinched condition as Andrews-Baker's will be convergent to a round point in finite time.展开更多
This paper mainly deals with the type II singularities of the mean curvature flow from a symplectic surface or from an almost calibrated Lagrangian surface in a K¨ahler surface.The relation between the maximum of...This paper mainly deals with the type II singularities of the mean curvature flow from a symplectic surface or from an almost calibrated Lagrangian surface in a K¨ahler surface.The relation between the maximum of the Kahler angle and the maximum of |H|2 on the limit flow is studied.The authors also show the nonexistence of type II blow-up flow of a symplectic mean curvature flow which is normal flat or of an almost calibrated Lagrangian mean curvature flow which is flat.展开更多
In this paper, for the Lorentz manifold M^(2)× R with M^(2) a 2-dimensional complete surface with nonnegative Gaussian curvature, the authors investigate its spacelike graphs over compact, strictly convex domains...In this paper, for the Lorentz manifold M^(2)× R with M^(2) a 2-dimensional complete surface with nonnegative Gaussian curvature, the authors investigate its spacelike graphs over compact, strictly convex domains in M^(2), which are evolving by the nonparametric mean curvature flow with prescribed contact angle boundary condition, and show that solutions converge to ones moving only by translation.展开更多
基金Kong and Wang was supported in part by the NSF of China (10671124)the NCET of China (NCET-05-0390)the work of Liu was supported in part by the NSF of China
文摘In this paper we investigate the one-dimensional hyperbolic mean curvatureflow for closed plane curves. More precisely, we consider a family of closed curves F : S1 × [0, T ) → R^2 which satisfies the following evolution equation δ^2F /δt^2 (u, t) = k(u, t)N(u, t)-▽ρ(u, t), ∨(u, t) ∈ S^1 × [0, T ) with the initial data F (u, 0) = F0(u) and δF/δt (u, 0) = f(u)N0, where k is the mean curvature and N is the unit inner normal vector of the plane curve F (u, t), f(u) and N0 are the initial velocity and the unit inner normal vector of the initial convex closed curve F0, respectively, and ▽ρ is given by ▽ρ Δ=(δ^2F /δsδt ,δF/δt) T , in which T stands for the unit tangent vector. The above problem is an initial value problem for a system of partial differential equations for F , it can be completely reduced to an initial value problem for a single partial differential equation for its support function. The latter equation is a hyperbolic Monge-Ampere equation. Based on this, we show that there exists a class of initial velocities such that the solution of the above initial value problem exists only at a finite time interval [0, Tmax) and when t goes to Tmax, either the solution convergesto a point or shocks and other propagating discontinuities are generated. Furthermore, we also consider the hyperbolic mean curvature flow with the dissipative terms and obtain the similar equations about the support functions and the curvature of the curve. In the end, we discuss the close relationship between the hyperbolic mean curvature flow and the equations for the evolving relativistic string in the Minkowski space-time R^1,1.
基金supported in part by a grant from China Scholarship Councilthe National Natural Science Foundation of China(11301006)the Anhui Provincial Natural Science Foundation(1408085MA01)
文摘This article concerns the self-similar solutions to the hyperbolic mean curvature flow (HMCF) for plane curves, which is proposed by Kong, Liu, and Wang and relates to an earlier proposal for general flows by LeFloch and Smoczyk. We prove that all curves immersed in the plane which move in a self-similar manner under the HMCF are straight lines and circles. Moreover, it is found that a circle can either expand to a larger one and then converge to a point, or shrink directly and converge to a point, where the curvature approaches to infinity.
基金supported by the NSFC(11101267,11271132)the Innovation Program of Shanghai Municipal Education Commission(13YZ087)the Science and Technology Program of Shanghai Maritime University(20120061)
文摘Given a family of smooth immersions of closed hypersurfaces in a locally symmetric Riemannian manifold with bounded geometry, moving by mean curvature flow, we show that at the first finite singular time of mean curvature flow, certain subcritical quantities concerning the second fundamental form blow up. This result not only generalizes a result of Le-Sesum and Xu-Ye-Zhao, but also extends the latest work of Le in the Euclidean case
基金supported partially by the National Natural Science Foundation of China (10871171)the Chinese-Hungarian Sci. and Tech. cooperation (for 2007-2009)
文摘Under the hypothesis of mean curvature flows of hypersurfaces, we prove that the limit of the smooth rescaling of the singularity is weakly convex. It is a generalization of the result due to G.Huisken and C. Sinestrari in. These apriori bounds are satisfied for mean convex hypersurfaces in locally symmetric Riemannian manifolds with nonnegative sectional curvature.
基金Supported by Natural Science Foundation of China (10631020, 10871061)the Grant for Ph.D Program of Ministry of Education of Chinasupported by Innovation Propject for the Development of Science and Technology (IHLB) (201098)
文摘First, we review the authors' recent results on translating solutions to mean curvature flows in Euclidean space as well as in Minkowski space, emphasizing on the asymptotic expansion of rotationally symmetric solutions. Then we study the sufficient condition for which the translating solution is rotationally symmetric. We will use a moving plane method to show that this condition is optimal for the symmetry of solutions to fully nonlinear elliptic equations without ground state condition.
基金Supported by the Natural Science Foundation of Shanxi(202103021224068).
文摘Under investigation in this paper is a hyperbolic mean curvature flow for convex evolving curves.Firstly,in view of Lie group analysis,infinitesimal generators,symmetry groups and an optimal system of symmetries of the considered hyperbolic mean curvature flow are presented.At the same time,some group invariant solutions are computed through reduced equations.In particular,we construct explicit solutions by applying the power series method.Furthermore,the convergence of the solutions of power series is certificated.Finally,conservation laws of the hyperbolic mean curvature flow are established via Ibragimov's approach.
文摘In this paper a flow of convex hypersurfaces in the Euclidean space by the linear-combination of the mean curvature and the n-th root of the Gauss-Kronecker curvature is considered. It is proved that such deforming convex hypersurfaces converge to a round sphere in the Huisken's sense.
基金supported in part by the NSFC(11801496,11926352)the Fok Ying-Tung Education Foundation(China)the Hubei Key Laboratory of Applied Mathematics(Hubei University).
文摘In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piecewise smooth boundary,and ℝ denotes the Euclidean 1-space.We prove an interesting stability result for translating spacelike graphs in M^(n)×ℝ under a conformal transformation.
基金supported by the National Natural Science Foundation of China(Nos.12071424,11531012,12201087).
文摘Recently,Pipoli and Sinestrari[Pipoli,G.and Sinestrari,C.,Mean curvature flow of pinched submanifolds of CPn,Comm.Anal.Geom.,25,2017,799-846]initiated the study of convergence problem for the mean curvature flow of small codimension in the complex projective space CPm.The purpose of this paper is to develop the work due to Pipoli and Sinestrari,and verify a new convergence theorem for the mean curvature flow of arbitrary codimension in the complex projective space.Namely,the authors prove that if the initial submanifold in CPm satisfies a suitable pinching condition,then the mean curvature flow converges to a round point in finite time,or converges to a totally geodesic submanifold as t→∞.Consequently,they obtain a differentiable sphere theorem for submanifolds in the complex projective space.
基金Supported by National 973-Project and Basic Research Grant of Tsinghua University
文摘This paper is devoted to the study of the vortex dynamics of the Cauchy problem for a parabolic Ginzburg Landau system which simulates inhomogeneous type II superconducting materials and three-dimensional superconducting thin films having variable thickness. We will prove that the vortex of the problem is moved by a codimension k mean curvature flow with external force field. Besides, we will show that the mean curvature flow depends strongly on the external force, having completely different phenomena from the usual mean curvature flow.
基金the National Natural Science Foundation of China(No.10531090).
文摘In this paper,the mean curvature flow of complete submanifolds in Euclidean space with convex Gauss image and bounded curvature is studied.The confinable property of the Gauss image under the mean curvature flow is proved,which in turn helps one to obtain the curvature estimates.Then the author proves a long time existence result.The asymptotic behavior of these solutions when t→∞is also studied.
基金supported in part by a Sloan fellowship and an NSERC grant for Chenby a grant from NSF of China for Li.by a grant from NSF of USA for Tian
文摘A surface E is a graph in R^4 if there is a unit constant 2-form ω on R^4 such that <e_1∧e_2.ω>≥v_0>0 where{e_1.e_2}is an orthonormal frame on Σ.We prove that.if v_0≥on the initial snrface,then the mean curvature flow has a global solution and the scaled surfaces converge to a self-similar solution.A surface Σ is a graph in M_1×M_2 where M_1 and M_2 are Riemann surfaces. if<e_1∧e_2.ω>≥v_0>0 where w_1 is a Khler form on M_1.We prove that.if M is a Khler-Einstein surface with scalar curvature R.v_0≥ on the initial surface,then the mean curvature flow has a global solution and it sub-converges to a minimal surface,if.in addition.R≥0 it converges to a totally geodesic surface which is holomorphic.
基金Project supported by the 973 Project of the Ministry of Science and Technology of China and the Trans-Century Training Programme Foundation for the Talents by the Ministry of Education of China.
文摘This paper proves that any rotationally symmetric translating soliton of mean curvature flow in R3 is strictly convex if it is not a plane and it intersects its symmetric axis at one point. The authors also study the symmetry of any translating soliton of mean curvature flow in Rn.
基金supported by National Natural Science Foundation of China (Grant Nos. 10771187, 11071211)the Trans-Century Training Programme Foundation for Talents by the Ministry of Education of China+1 种基金the Natural Science Foundation of Zhejiang Province (Grant No. 101037)the China Postdoctoral Science Foundation (Grant No. 20090461379)
文摘We investigate the integral conditions to extend the mean curvature flow in a Riemannian manifold. We prove that the mean curvature flow solution with finite total mean curvature at a finite time interval [0,T) can be extended over time T. Moreover,we show that the condition is optimal in some sense.
文摘In this note,we generalize an extension theorem in [Le-Sesum] and [Xu-Ye-Zhao] of the mean curvature flow to the Hk mean curvature flow under some extra conditions.The main difficulty in proving the extension theorem is to find a suitable version of Michael-Simon inequality for the Hk mean curvature flow,and to do a suitable Moser iteration process.These two problems are overcome by imposing some extra conditions which may be weakened or removed in our forthcoming paper.On the other hand,we derive some estimates for the generalized mean curvature flow,which have their own interesting.
文摘In this paper,the motion of inverse mean curvature flow which starts from a closed star-sharped hypersurface in special rotationally symmetric spaces is studied.It is proved that the flow converges to a unique geodesic sphere,i.e.,every principle curvature of the hypersurfaces converges to a same constant under the flow.
基金supported by National Natural Science Foundation of China(Grant Nos.11671121,11171091 and 11371018)。
文摘In this paper, we introduce and study the conformal mean curvature flow of submanifolds of higher codimension in the Euclidean space R^n. This kind of flow is a special case of a general modified mean curvature flow which is of various origination. As the main result, we prove a blow-up theorem concluding that, under the conformal mean curvature flow in R^n, the maximum of the square norm of the second fundamental form of any compact submanifold tends to infinity in finite time. Furthermore, we also prove that the external conformal forced mean curvature flow of a compact submanifold in R^n with the same pinched condition as Andrews-Baker's will be convergent to a round point in finite time.
基金supported by National Natural Science Foundation of China(Grant No.11301191)supported by Science and Technology Development Fund(Macao S.A.R.)FDCT/016/2013/A1
文摘In this paper, we show a backwards uniqueness theorem of the mean curvature flow with bounded second fundamental forms in arbitrary codimension.
基金Project supported by the National Natural Science Foundation of China (Nos. 10901088, 11001268)
文摘This paper mainly deals with the type II singularities of the mean curvature flow from a symplectic surface or from an almost calibrated Lagrangian surface in a K¨ahler surface.The relation between the maximum of the Kahler angle and the maximum of |H|2 on the limit flow is studied.The authors also show the nonexistence of type II blow-up flow of a symplectic mean curvature flow which is normal flat or of an almost calibrated Lagrangian mean curvature flow which is flat.
基金This work was supported by the National Natural Science Foundation of China(Nos.11401131,11101132,11926352)the Fok Ying-Tung Education Foundation(China)Hubei Key Laboratory of Applied Mathematics(Hubei University)。
文摘In this paper, for the Lorentz manifold M^(2)× R with M^(2) a 2-dimensional complete surface with nonnegative Gaussian curvature, the authors investigate its spacelike graphs over compact, strictly convex domains in M^(2), which are evolving by the nonparametric mean curvature flow with prescribed contact angle boundary condition, and show that solutions converge to ones moving only by translation.