This paper presented a method that incorporates Markov Random Field(MRF), watershed segmentation and merging techniques for performing image segmentation and edge detection tasks. MRF is used to obtain an initial esti...This paper presented a method that incorporates Markov Random Field(MRF), watershed segmentation and merging techniques for performing image segmentation and edge detection tasks. MRF is used to obtain an initial estimate of x regions in the image under process where in MRF model, gray level x , at pixel location i , in an image X , depends on the gray levels of neighboring pixels. The process needs an initial segmented result. An initial segmentation is got based on K means clustering technique and the minimum distance, then the region process in modeled by MRF to obtain an image contains different intensity regions. Starting from this we calculate the gradient values of that image and then employ a watershed technique. When using MRF method it obtains an image that has different intensity regions and has all the edge and region information, then it improves the segmentation result by superimpose closed and an accurate boundary of each region using watershed algorithm. After all pixels of the segmented regions have been processed, a map of primitive region with edges is generated. Finally, a merge process based on averaged mean values is employed. The final segmentation and edge detection result is one closed boundary per actual region in the image.展开更多
为降低电磁干扰对信号传输的影响,分析了应答器上行链路信号传输过程及其易遭受干扰信号的特点,设计了基于符号最小均方误差(least mean square,LMS)算法的自适应解调方法。为在硬件平台中实现该解调方法,通过仿真计算,确定LMS算法的自...为降低电磁干扰对信号传输的影响,分析了应答器上行链路信号传输过程及其易遭受干扰信号的特点,设计了基于符号最小均方误差(least mean square,LMS)算法的自适应解调方法。为在硬件平台中实现该解调方法,通过仿真计算,确定LMS算法的自适应算法中间变量变化范围,使用截位操作完成权值系数的更新,设置均衡器长度、步长因子、中值滤波系数分别为1、1/64、16,可在不占用过多硬件资源情况下获得良好的解调性能。解调算法在现场可编程门阵列(field programmable gata array,FPGA)上予以验证,实验表明,当信噪比为6 dB时,FPGA中自适应解调误码率为0.000001,在信噪比大于等于6 dB时,实测误码率与仿真分析误码率基本一致;FPGA自适应解调方法在列车不同速度等级下误码率均小于10^(-6)。展开更多
在对LMS算法进行MATLAB仿真的基础上,采用硬件描述语言VHDL和FPGA完成LMS自适应算法的硬件实现。自适应均衡器的设计采用自上向下的设计思想、串并行相结合的流水线操作方法、定点运算方法,在Quartus II 4.1平台和Stratix II系列芯片上...在对LMS算法进行MATLAB仿真的基础上,采用硬件描述语言VHDL和FPGA完成LMS自适应算法的硬件实现。自适应均衡器的设计采用自上向下的设计思想、串并行相结合的流水线操作方法、定点运算方法,在Quartus II 4.1平台和Stratix II系列芯片上进行了综合和仿真。结果表明,该设计结果符合要求,能实现自适应过程。展开更多
文摘This paper presented a method that incorporates Markov Random Field(MRF), watershed segmentation and merging techniques for performing image segmentation and edge detection tasks. MRF is used to obtain an initial estimate of x regions in the image under process where in MRF model, gray level x , at pixel location i , in an image X , depends on the gray levels of neighboring pixels. The process needs an initial segmented result. An initial segmentation is got based on K means clustering technique and the minimum distance, then the region process in modeled by MRF to obtain an image contains different intensity regions. Starting from this we calculate the gradient values of that image and then employ a watershed technique. When using MRF method it obtains an image that has different intensity regions and has all the edge and region information, then it improves the segmentation result by superimpose closed and an accurate boundary of each region using watershed algorithm. After all pixels of the segmented regions have been processed, a map of primitive region with edges is generated. Finally, a merge process based on averaged mean values is employed. The final segmentation and edge detection result is one closed boundary per actual region in the image.
文摘在对LMS算法进行MATLAB仿真的基础上,采用硬件描述语言VHDL和FPGA完成LMS自适应算法的硬件实现。自适应均衡器的设计采用自上向下的设计思想、串并行相结合的流水线操作方法、定点运算方法,在Quartus II 4.1平台和Stratix II系列芯片上进行了综合和仿真。结果表明,该设计结果符合要求,能实现自适应过程。