It is shown that any fixed point of a Lipschitzian,strictly pseudocontractive muping T on a closed convex subset K of a Banach space X may be approximated by Ishikawa iterative procedure.The results in this paper pro...It is shown that any fixed point of a Lipschitzian,strictly pseudocontractive muping T on a closed convex subset K of a Banach space X may be approximated by Ishikawa iterative procedure.The results in this paper provide the new convergence criteria and novel convergence rate estimate for Ishikawa iterative sequence.展开更多
Let E be a uniformly convex Banach space which satisfies Opial's condition or has a Frechet differentiable norm,and C be a bounded closed convex subset of E. If T∶C→C is (asymptotically)nonexpans...Let E be a uniformly convex Banach space which satisfies Opial's condition or has a Frechet differentiable norm,and C be a bounded closed convex subset of E. If T∶C→C is (asymptotically)nonexpansive,then the modified Ishikawa iteration process defined byx n+1 =t nT ns nT nx n+1-s nx n+(1-t n)x n,converges weakly to a fixed point of T ,where {t n} and {s n} are sequences in [0,1] with some restrictions.展开更多
The purpose of this paper is to investigate the problem of approximatingfixed points of non- Lipschitizian asymptotically pseudocontractive mappings in an ar-bitrary real Banach space by the modified Ishikawa iterativ...The purpose of this paper is to investigate the problem of approximatingfixed points of non- Lipschitizian asymptotically pseudocontractive mappings in an ar-bitrary real Banach space by the modified Ishikawa iterative sequences with errors.展开更多
A new class of almost asymptotically nonexpansive type mappings in Banach spaces is introduced,which includes a number of known classes of nonlinear Lipschitzian mappings and non_Lipschitzian mappings in Banach spaces...A new class of almost asymptotically nonexpansive type mappings in Banach spaces is introduced,which includes a number of known classes of nonlinear Lipschitzian mappings and non_Lipschitzian mappings in Banach spaces as special cases; for example,the known classes of nonexpansive mappings,asymptotically nonexpansive mappings and asymptotically nonexpansive type mappings.The convergence problem of modified Ishikawa iterative sequences with errors for approximating fixed points of almost asymptotically nonexpansive type mappings is considered.Not only S.S.Chang's inequality but also H.K.Xu's one for the norms of Banach spaces are applied to make the error estimate between the exact fixed point and the approximate one.Moreover,Zhang Shi_sheng's method(Applied Mathematics and Mechanics(English Edition),2001,22(1):25-34) for making the convergence analysis of modified Ishikawa iterative sequences with errors is extended to the case of almost asymptotically nonexpansive type mappings. The new convergence criteria of modified Ishikawa iterative sequences with errors for finding fixed points of almost asymptotically nonexpansive type mappings in uniformly convex Banach spaces are presented. Also,the new convergence criteria of modified Mann iterative sequences with errors for this class of mappings are immediately obtained from these criteria.The above results unify,improve and generalize Zhang Shi_sheng's ones on approximating fixed points of asymptotically nonexpansive type mappings by the modified Ishikawa and Mann iterative sequences with errors.展开更多
Some convergence theorems of Ishikawa type iterative sequence with errors for nonlinear general quasi-contractive mapping in convex metric spaces are proved. The results not only extend and improve the corresponding r...Some convergence theorems of Ishikawa type iterative sequence with errors for nonlinear general quasi-contractive mapping in convex metric spaces are proved. The results not only extend and improve the corresponding results of L. B. Ciric, Q. H. Liu, H. E. Rhoades and H. K. Xu, et al., but also give an affirmative answer to the open question of Rhoades-Naimpally- Singh in convex metric spaces.展开更多
Itis shown that any fixed point of each Lipschitzian,strictly pseudocontractive map- ping T on a closed convex subset K of a Banach space X may be norm approximated by Ishikawa iterative procedure.The argument in th...Itis shown that any fixed point of each Lipschitzian,strictly pseudocontractive map- ping T on a closed convex subset K of a Banach space X may be norm approximated by Ishikawa iterative procedure.The argument in this paper provides a convergence rate estimate. Moreover the resultin this paper improves,generalizes and summarizes some important and el- egant recent results展开更多
We establish weak and strong convergence of Ishikawa type iterates of two pointwise asymptotic nonexpansive maps in a Hadamard space. For weak and strong convergence results, we drop “rate of convergence condition”,...We establish weak and strong convergence of Ishikawa type iterates of two pointwise asymptotic nonexpansive maps in a Hadamard space. For weak and strong convergence results, we drop “rate of convergence condition”, namely (Cn(x)-1)< to answer in the affirma-tive to the open question posed by Tan and Xu [1] even in a general setup.展开更多
In this paper,the approximation problems of Ishikawa iteration with errors of fixed points for asymptotically nonexpansive mappings and asymptotically pseudocontractive mappings in arbitrary real Banach spaces are inv...In this paper,the approximation problems of Ishikawa iteration with errors of fixed points for asymptotically nonexpansive mappings and asymptotically pseudocontractive mappings in arbitrary real Banach spaces are investigated.Some necessary condition and sufficient condition for the convergence of iterative sequences are given respectively.The results thus extend and improve some recent corresponding results.展开更多
Let E be a uniformly convex Banach space which satisfies Opial’s conditionor has a Frechet differentiable norm.and C be a bounded closed convex subset of E.IfT:C→C is a nonexpansive mapping.then for any initial data...Let E be a uniformly convex Banach space which satisfies Opial’s conditionor has a Frechet differentiable norm.and C be a bounded closed convex subset of E.IfT:C→C is a nonexpansive mapping.then for any initial data x0∈C,the Ishikawaiteration process{xn},defined by xn=tnT(snTxn+(1-sn)xn)+(1-tn)xn,n≥0,converges weakly to a fixed point of T,where{tn}and{sn}are sequences in[0,1]withsome restrictions.展开更多
For a Banach Space X Garcia-Falset introduced the coefficient R(X) and showed that if R(X) 〈 2 then X has a fixed point. In this paper, we define a mean non-expansive mapping T on X in the sense that ||Tx - TY...For a Banach Space X Garcia-Falset introduced the coefficient R(X) and showed that if R(X) 〈 2 then X has a fixed point. In this paper, we define a mean non-expansive mapping T on X in the sense that ||Tx - TY|| ≤ a||x - y|| + b||x - Ty|| for any x,y E X, where a,b ≥ 0, a + b ≤ 1. We show that if R(X) 〈 1/1+b then T has a fixed point in X.展开更多
In convex metric spaces, the sufficient and necessary conditions for Ishikawa iterative sequences of uniformly quasi-Lipschitzian mapping T with mixed errors to converge to a fixed point ate proved, and as a special c...In convex metric spaces, the sufficient and necessary conditions for Ishikawa iterative sequences of uniformly quasi-Lipschitzian mapping T with mixed errors to converge to a fixed point ate proved, and as a special case, in which T need not be continuous. The results of this paper improve and extend some recent results.展开更多
The purpose of this paper is to investigate some sufficient and necessary conditions for three-step Ishikawa iterative sequences with error terms for uniformly quasi-Lipschitzian mappings to converge to fixed points. ...The purpose of this paper is to investigate some sufficient and necessary conditions for three-step Ishikawa iterative sequences with error terms for uniformly quasi-Lipschitzian mappings to converge to fixed points. Our results extend and improve the recent ones announced by Liu [3,4], Xu and Noor [5], and many others.展开更多
A few weak and strong convergence theorems of the modified three-step iterative sequence with errors and the modified Ishikawa iterative sequence with errors for asymptotically non-expansive mappings in any non-empty ...A few weak and strong convergence theorems of the modified three-step iterative sequence with errors and the modified Ishikawa iterative sequence with errors for asymptotically non-expansive mappings in any non-empty closed convex subsets of uniformly convex Banach spaces are established. The results presented in this paper substantially extend the results due to Chang (2001), Osilike and Aniagbosor (2000), Rhoades (1994) and Schu (1991).展开更多
Using a more general contractive definition, this paper continues the study on T stable Ishikawa iteration procedure and generalizes most of the results of Harder and Hicks [1] , Osilike [5] and Rhoades [6-8] . A note...Using a more general contractive definition, this paper continues the study on T stable Ishikawa iteration procedure and generalizes most of the results of Harder and Hicks [1] , Osilike [5] and Rhoades [6-8] . A note on [6][8] is also presented. [WT5,5”HZ]展开更多
基金Supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Ed-ucation Institutions of MOE,P.R.C.
文摘It is shown that any fixed point of a Lipschitzian,strictly pseudocontractive muping T on a closed convex subset K of a Banach space X may be approximated by Ishikawa iterative procedure.The results in this paper provide the new convergence criteria and novel convergence rate estimate for Ishikawa iterative sequence.
基金Supported both by the National Natural Science Foundation(1 980 1 0 2 3 ) and the Teaching and ResearchAward Fund for Outstanding Young Teachers in Higher Education Institutions of MOEP.R.C
文摘Let E be a uniformly convex Banach space which satisfies Opial's condition or has a Frechet differentiable norm,and C be a bounded closed convex subset of E. If T∶C→C is (asymptotically)nonexpansive,then the modified Ishikawa iteration process defined byx n+1 =t nT ns nT nx n+1-s nx n+(1-t n)x n,converges weakly to a fixed point of T ,where {t n} and {s n} are sequences in [0,1] with some restrictions.
基金Project supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of MOE,P.R.C.and by the National Natural Science Foundation (19801023)of P.R.C.
文摘The purpose of this paper is to investigate the problem of approximatingfixed points of non- Lipschitizian asymptotically pseudocontractive mappings in an ar-bitrary real Banach space by the modified Ishikawa iterative sequences with errors.
文摘A new class of almost asymptotically nonexpansive type mappings in Banach spaces is introduced,which includes a number of known classes of nonlinear Lipschitzian mappings and non_Lipschitzian mappings in Banach spaces as special cases; for example,the known classes of nonexpansive mappings,asymptotically nonexpansive mappings and asymptotically nonexpansive type mappings.The convergence problem of modified Ishikawa iterative sequences with errors for approximating fixed points of almost asymptotically nonexpansive type mappings is considered.Not only S.S.Chang's inequality but also H.K.Xu's one for the norms of Banach spaces are applied to make the error estimate between the exact fixed point and the approximate one.Moreover,Zhang Shi_sheng's method(Applied Mathematics and Mechanics(English Edition),2001,22(1):25-34) for making the convergence analysis of modified Ishikawa iterative sequences with errors is extended to the case of almost asymptotically nonexpansive type mappings. The new convergence criteria of modified Ishikawa iterative sequences with errors for finding fixed points of almost asymptotically nonexpansive type mappings in uniformly convex Banach spaces are presented. Also,the new convergence criteria of modified Mann iterative sequences with errors for this class of mappings are immediately obtained from these criteria.The above results unify,improve and generalize Zhang Shi_sheng's ones on approximating fixed points of asymptotically nonexpansive type mappings by the modified Ishikawa and Mann iterative sequences with errors.
基金Foundation items:the National Ntural Science Foundation of China(19771058)the Natural Science Foundation of Education Department of Sichuan Province(01LA70)
文摘Some convergence theorems of Ishikawa type iterative sequence with errors for nonlinear general quasi-contractive mapping in convex metric spaces are proved. The results not only extend and improve the corresponding results of L. B. Ciric, Q. H. Liu, H. E. Rhoades and H. K. Xu, et al., but also give an affirmative answer to the open question of Rhoades-Naimpally- Singh in convex metric spaces.
基金This project was supported both by the National Natural Science Foundation of China (1 980 1 0 2 3 ) andby the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institu-tions of MOEP.R.C.
文摘Itis shown that any fixed point of each Lipschitzian,strictly pseudocontractive map- ping T on a closed convex subset K of a Banach space X may be norm approximated by Ishikawa iterative procedure.The argument in this paper provides a convergence rate estimate. Moreover the resultin this paper improves,generalizes and summarizes some important and el- egant recent results
文摘We establish weak and strong convergence of Ishikawa type iterates of two pointwise asymptotic nonexpansive maps in a Hadamard space. For weak and strong convergence results, we drop “rate of convergence condition”, namely (Cn(x)-1)< to answer in the affirma-tive to the open question posed by Tan and Xu [1] even in a general setup.
基金Supported by the National Science Foundation of Yunnan Province(2 0 0 2 A0 0 58M)
文摘In this paper,the approximation problems of Ishikawa iteration with errors of fixed points for asymptotically nonexpansive mappings and asymptotically pseudocontractive mappings in arbitrary real Banach spaces are investigated.Some necessary condition and sufficient condition for the convergence of iterative sequences are given respectively.The results thus extend and improve some recent corresponding results.
基金Supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of MOE,China.
文摘Let E be a uniformly convex Banach space which satisfies Opial’s conditionor has a Frechet differentiable norm.and C be a bounded closed convex subset of E.IfT:C→C is a nonexpansive mapping.then for any initial data x0∈C,the Ishikawaiteration process{xn},defined by xn=tnT(snTxn+(1-sn)xn)+(1-tn)xn,n≥0,converges weakly to a fixed point of T,where{tn}and{sn}are sequences in[0,1]withsome restrictions.
基金the National Natural Science Foundation of China(No.10461006)the Natural Science Foundation of Shandong Province(Y002A10)the Younger Foundation of Yantai University(SX05Z9)
文摘For a Banach Space X Garcia-Falset introduced the coefficient R(X) and showed that if R(X) 〈 2 then X has a fixed point. In this paper, we define a mean non-expansive mapping T on X in the sense that ||Tx - TY|| ≤ a||x - y|| + b||x - Ty|| for any x,y E X, where a,b ≥ 0, a + b ≤ 1. We show that if R(X) 〈 1/1+b then T has a fixed point in X.
文摘In convex metric spaces, the sufficient and necessary conditions for Ishikawa iterative sequences of uniformly quasi-Lipschitzian mapping T with mixed errors to converge to a fixed point ate proved, and as a special case, in which T need not be continuous. The results of this paper improve and extend some recent results.
基金The author is thankful to the National Science Foundation of China for support through Grant 10171118
文摘The purpose of this paper is to investigate some sufficient and necessary conditions for three-step Ishikawa iterative sequences with error terms for uniformly quasi-Lipschitzian mappings to converge to fixed points. Our results extend and improve the recent ones announced by Liu [3,4], Xu and Noor [5], and many others.
基金supported by Korea Research Foundation Grant(KRF-2001-005-D00002)
文摘A few weak and strong convergence theorems of the modified three-step iterative sequence with errors and the modified Ishikawa iterative sequence with errors for asymptotically non-expansive mappings in any non-empty closed convex subsets of uniformly convex Banach spaces are established. The results presented in this paper substantially extend the results due to Chang (2001), Osilike and Aniagbosor (2000), Rhoades (1994) and Schu (1991).
基金TheworkissupportedbytheNationalNaturnalScienceFoundationofChina (No .1980 10 17)andpartiallysupportedbyFoun dationforUniversityK
文摘Using a more general contractive definition, this paper continues the study on T stable Ishikawa iteration procedure and generalizes most of the results of Harder and Hicks [1] , Osilike [5] and Rhoades [6-8] . A note on [6][8] is also presented. [WT5,5”HZ]