An analytical theory for calculating perturbations of the orbital elements of a satellite due to J2 to accuracy up to fourth power in eccentricity is developed. It is observed that there is significant improvement in ...An analytical theory for calculating perturbations of the orbital elements of a satellite due to J2 to accuracy up to fourth power in eccentricity is developed. It is observed that there is significant improvement in all the orbital elements with the present theory over second-order theory. The theory is used for computing the mean orbital elements, which are found to be more accurate than provided by Bhatnagar and taqvi’s theory (up to second power in eccentricity). Mean elements have a large number of practical applications.展开更多
To investigate the real-time mean orbital elements(MOEs)estimation problem under the influence of state jumping caused by non-fatal spacecraft collision or protective orbit trans-fer,a modified augmented square-root u...To investigate the real-time mean orbital elements(MOEs)estimation problem under the influence of state jumping caused by non-fatal spacecraft collision or protective orbit trans-fer,a modified augmented square-root unscented Kalman filter(MASUKF)is proposed.The MASUKF is composed of sigma points calculation,time update,modified state jumping detec-tion,and measurement update.Compared with the filters used in the existing literature on MOEs estimation,it has three main characteristics.Firstly,the state vector is augmented from six to nine by the added thrust acceleration terms,which makes the fil-ter additionally give the state-jumping-thrust-acceleration esti-mation.Secondly,the normalized innovation is used for state jumping detection to set detection threshold concisely and make the filter detect various state jumping with low latency.Thirdly,when sate jumping is detected,the covariance matrix inflation will be done,and then an extra time update process will be con-ducted at this time instance before measurement update.In this way,the relatively large estimation error at the detection moment can significantly decrease.Finally,typical simulations are per-formed to illustrated the effectiveness of the method.展开更多
An impulse feedback control law to change the mean orbit elements of spacecraft around asteroid is presented. First, the mean orbit elements are transferred to the osculating orbit elements at the burning time. Then, ...An impulse feedback control law to change the mean orbit elements of spacecraft around asteroid is presented. First, the mean orbit elements are transferred to the osculating orbit elements at the burning time. Then, the feedback control law based on Gauss’s perturbation equations of motion is given. And the impulse control for targeting from the higher circulation orbit to the specified periapsis is developed. Finally, the numerical simulation is performed and the simulation results show that the presented impulse control law is effective.展开更多
We study the properties of superfluid in a two-dimensional (2D) polarized Fermi gas with spin-orbit coupling and adiabatic rotation which are trapped in a harmonic potential. Due to the competition between polarizat...We study the properties of superfluid in a two-dimensional (2D) polarized Fermi gas with spin-orbit coupling and adiabatic rotation which are trapped in a harmonic potential. Due to the competition between polarization, spin-orbit coupling, and adiabatic rotation, the Fermi gas exhibits many intriguing phenomena. By using the Bardeen-Cooper-Schrieffer (BCS) mean-field method with local density approximation, we investigate the dependence of order parameter solution on the spin-orbit coupling strength and the rotation velocity. The energy spectra with different rotation velocities are studied in detail. Besides, the conditions for the zero-energy Majorana fermions in topological superfluid phase to be observed are obtained. By investigating distributions of number density, we find that the rotation has opposite effect on the distribution of number density with different spins, which leads to the enhancement of the polarization of Fermi gas. Here, we focus on the region of BCS pairing and ignore the Fulde-Ferrell-Larkin-Ovchinnikov state.展开更多
Sun synchronous orbit and frozen orbit formed due to J 2 perturbation have very strict constraints on orbital parameters,which have restricted the application a lot.In this paper,several control strategies were illust...Sun synchronous orbit and frozen orbit formed due to J 2 perturbation have very strict constraints on orbital parameters,which have restricted the application a lot.In this paper,several control strategies were illustrated to realize Sun synchronous frozen orbit with arbitrary orbital elements using continuous low-thrust.Firstly,according to mean element method,the averaged rate of change of the orbital elements,originating from disturbing constant accelerations over one orbital period,was derived from Gauss' variation of parameters equations.Then,we proposed that binormal acceleration could be used to realize Sun synchronous orbit,and radial or transverse acceleration could be adopted to eliminate the rotation of the argument of the perigee.Finally,amending methods on the control strategies mentioned above were presented to eliminate the residual secular growth.Simulation results showed that the control strategies illustrated in this paper could realize Sun synchronous frozen orbit with arbitrary orbital elements,and can save much more energy than the schemes presented in previous studies,and have no side effect on other orbital parameters' secular motion.展开更多
文摘An analytical theory for calculating perturbations of the orbital elements of a satellite due to J2 to accuracy up to fourth power in eccentricity is developed. It is observed that there is significant improvement in all the orbital elements with the present theory over second-order theory. The theory is used for computing the mean orbital elements, which are found to be more accurate than provided by Bhatnagar and taqvi’s theory (up to second power in eccentricity). Mean elements have a large number of practical applications.
基金This work was supported by National Natural Science Foundation of China(12372045)Shanghai Aerospace Science and Technology Program(SAST2021-030).
文摘To investigate the real-time mean orbital elements(MOEs)estimation problem under the influence of state jumping caused by non-fatal spacecraft collision or protective orbit trans-fer,a modified augmented square-root unscented Kalman filter(MASUKF)is proposed.The MASUKF is composed of sigma points calculation,time update,modified state jumping detec-tion,and measurement update.Compared with the filters used in the existing literature on MOEs estimation,it has three main characteristics.Firstly,the state vector is augmented from six to nine by the added thrust acceleration terms,which makes the fil-ter additionally give the state-jumping-thrust-acceleration esti-mation.Secondly,the normalized innovation is used for state jumping detection to set detection threshold concisely and make the filter detect various state jumping with low latency.Thirdly,when sate jumping is detected,the covariance matrix inflation will be done,and then an extra time update process will be con-ducted at this time instance before measurement update.In this way,the relatively large estimation error at the detection moment can significantly decrease.Finally,typical simulations are per-formed to illustrated the effectiveness of the method.
文摘An impulse feedback control law to change the mean orbit elements of spacecraft around asteroid is presented. First, the mean orbit elements are transferred to the osculating orbit elements at the burning time. Then, the feedback control law based on Gauss’s perturbation equations of motion is given. And the impulse control for targeting from the higher circulation orbit to the specified periapsis is developed. Finally, the numerical simulation is performed and the simulation results show that the presented impulse control law is effective.
文摘We study the properties of superfluid in a two-dimensional (2D) polarized Fermi gas with spin-orbit coupling and adiabatic rotation which are trapped in a harmonic potential. Due to the competition between polarization, spin-orbit coupling, and adiabatic rotation, the Fermi gas exhibits many intriguing phenomena. By using the Bardeen-Cooper-Schrieffer (BCS) mean-field method with local density approximation, we investigate the dependence of order parameter solution on the spin-orbit coupling strength and the rotation velocity. The energy spectra with different rotation velocities are studied in detail. Besides, the conditions for the zero-energy Majorana fermions in topological superfluid phase to be observed are obtained. By investigating distributions of number density, we find that the rotation has opposite effect on the distribution of number density with different spins, which leads to the enhancement of the polarization of Fermi gas. Here, we focus on the region of BCS pairing and ignore the Fulde-Ferrell-Larkin-Ovchinnikov state.
基金supported by the National Natural Science Foundation of China (10702078)the Research Foundation of National University of Defense Technology (JC08-01-05)
文摘Sun synchronous orbit and frozen orbit formed due to J 2 perturbation have very strict constraints on orbital parameters,which have restricted the application a lot.In this paper,several control strategies were illustrated to realize Sun synchronous frozen orbit with arbitrary orbital elements using continuous low-thrust.Firstly,according to mean element method,the averaged rate of change of the orbital elements,originating from disturbing constant accelerations over one orbital period,was derived from Gauss' variation of parameters equations.Then,we proposed that binormal acceleration could be used to realize Sun synchronous orbit,and radial or transverse acceleration could be adopted to eliminate the rotation of the argument of the perigee.Finally,amending methods on the control strategies mentioned above were presented to eliminate the residual secular growth.Simulation results showed that the control strategies illustrated in this paper could realize Sun synchronous frozen orbit with arbitrary orbital elements,and can save much more energy than the schemes presented in previous studies,and have no side effect on other orbital parameters' secular motion.