This paper presents a method of measuring the particle mean size and dust concentration by small angle near forward light scattering optics and the extinction theory. Its theory is based on Fraunhofer diffraction the...This paper presents a method of measuring the particle mean size and dust concentration by small angle near forward light scattering optics and the extinction theory. Its theory is based on Fraunhofer diffraction theory which is the approximation of Mie scattering within the forward Fraunhofer diffraction lobe, and Rosin Rammler function is introduced to describe the particle size distribution in two phase flow in advance. Compared with the values by the sample weight method, the measurement results have a reasonable agreement. The present work has demonstrated that this method will be probably used to monitor the parameters of two phase flow.展开更多
Aiming at the problems of the traditional method of assessing distribution of particle size in bench blasting, a support vector machines (SVMs) regression methodology was used to predict the mean particle size (X50...Aiming at the problems of the traditional method of assessing distribution of particle size in bench blasting, a support vector machines (SVMs) regression methodology was used to predict the mean particle size (X50) resulting from rock blast fragmentation in various mines based on the statistical learning theory. The data base consisted of blast design parameters, explosive parameters, modulus of elasticity and in-situ block size. The seven input independent variables used for the SVMs model for the prediction of X50 of rock blast fragmentation were the ratio of bench height to drilled burden (H/B), ratio of spacing to burden (S/B), ratio of burden to hole diameter (B/D), ratio of stemming to burden (T/B), powder factor (Pf), modulus of elasticity (E) and in-situ block size (XB). After using the 90 sets of the measured data in various mines and rock formations in the world for training and testing, the model was applied to 12 another blast data for validation of the trained support vector regression (SVR) model. The prediction results of SVR were compared with those of artificial neural network (ANN), multivariate regression analysis (MVRA) models, conventional Kuznetsov method and the measured X50 values. The proposed method shows promising results and the prediction accuracy of SVMs model is acceptable.展开更多
The purpose of this paper is to investigate the mean size formula of wavelet packets in Lp for 0 〈 p ≤ ∞. We generalize a mean size formula of wavelet packets given in terms of the p-norm joint spectral radius and ...The purpose of this paper is to investigate the mean size formula of wavelet packets in Lp for 0 〈 p ≤ ∞. We generalize a mean size formula of wavelet packets given in terms of the p-norm joint spectral radius and we also give some asymptotic formulas for the Lp-norm or quasi-norm on the subdivision trees. All results will be given in the general setting,展开更多
The main purpose of blasting operation is to produce desired and optimum mean size rock fragments.Smaller or fine fragments cause the loss of ore during loading and transportation,whereas large or coarser fragments ne...The main purpose of blasting operation is to produce desired and optimum mean size rock fragments.Smaller or fine fragments cause the loss of ore during loading and transportation,whereas large or coarser fragments need to be further processed,which enhances production cost.Therefore,accurate prediction of rock fragmentation is crucial in blasting operations.Mean fragment size(MFS) is a crucial index that measures the goodness of blasting designs.Over the past decades,various models have been proposed to evaluate and predict blasting fragmentation.Among these models,artificial intelligence(AI)-based models are becoming more popular due to their outstanding prediction results for multiinfluential factors.In this study,support vector regression(SVR) techniques are adopted as the basic prediction tools,and five types of optimization algorithms,i.e.grid search(GS),grey wolf optimization(GWO),particle swarm optimization(PSO),genetic algorithm(GA) and salp swarm algorithm(SSA),are implemented to improve the prediction performance and optimize the hyper-parameters.The prediction model involves 19 influential factors that constitute a comprehensive blasting MFS evaluation system based on AI techniques.Among all the models,the GWO-v-SVR-based model shows the best comprehensive performance in predicting MFS in blasting operation.Three types of mathematical indices,i.e.mean square error(MSE),coefficient of determination(R^(2)) and variance accounted for(VAF),are utilized for evaluating the performance of different prediction models.The R^(2),MSE and VAF values for the training set are 0.8355,0.00138 and 80.98,respectively,whereas 0.8353,0.00348 and 82.41,respectively for the testing set.Finally,sensitivity analysis is performed to understand the influence of input parameters on MFS.It shows that the most sensitive factor in blasting MFS is the uniaxial compressive strength.展开更多
The influence of mean particle size on magnetic properties ofSm ( Co0.72Fe0. 15 Cu0. 1Zr0. 03 ) 7.5 sintered magnets, prepared by the conventional powder metallurgy method, was studied. With increasing ballmilling t...The influence of mean particle size on magnetic properties ofSm ( Co0.72Fe0. 15 Cu0. 1Zr0. 03 ) 7.5 sintered magnets, prepared by the conventional powder metallurgy method, was studied. With increasing ballmilling time, mean particle size decreases, specific surface increases, and sintering temperature decreases. The optimum sintering temperature of powders fabricated by baH-milling for 5, 7, 9 and 11 h are 1225, 1225, 1215 and 1215℃ respectively. The optimum value of Br, (BH)max, Hob and Hci of Sm ( Co0.72Fe0. 15 Cu0. 1Zr0. 03 ) 7.5 sintered magnets with powders ball-milling for 9 h and sintering at 1215 ℃ can reach 0.94 T, 708.4 kA·m^-1, 171.9 kJ·m^-3 and 2276.6 kA·m^-1 respectively, and the irreversible flux loss is less than 5 % after the sample ageing at 550 ℃ for 2 h, so the temperature stability improves and the magnets may be expected to be applied in the circumstances of 550 ℃.展开更多
Nano-volt magnetic resonance sounding(MRS) signals are sufficiently weak so that during the actual measurement, they are affected by environmental electromagnetic noise, leading to inaccuracy of the extracted characte...Nano-volt magnetic resonance sounding(MRS) signals are sufficiently weak so that during the actual measurement, they are affected by environmental electromagnetic noise, leading to inaccuracy of the extracted characteristic parameters and hindering effective inverse interpretation. Considering the complexity and non-homogeneous spatial distribution of environmental noise and based on the theory of adaptive noise cancellation, a model system for noise cancellation using multi-reference coils was constructed to receive MRS signals. The feasibility of this system with theoretical calculation and experiments was analyzed and a modified sigmoid variable step size least mean square(SVSLMS) algorithm for noise cancellation was presented. The simulation results show that, the multi-reference coil method performs better than the single one on both signal-to-noise ratio(SNR) improvement and signal waveform optimization after filtering, under the condition of different noise correlations in the reference coils and primary detecting coils and different SNRs. In particular, when the noise correlation is poor and the SNR<0, the SNR can be improved by more than 8 dB after filtering with multi-reference coils. And the average fitting errors for initial amplitude and relaxation time are within 5%. Compared with the normalized least mean square(NLMS) algorithm and multichannel Wiener filter and processing field test data, the effectiveness of the proposed method is verified.展开更多
为改善滤波-x最小均方(filtered-x least mean square,FxLMS)算法在噪声主动控制时无法兼顾收敛速度和稳态误差的问题,提出了基于sigmoid-sinh分段函数的FxLMS(SSFxLMS)算法,并引入蚁狮算法对SFxLMS(sigmoid filtered-x least mean squa...为改善滤波-x最小均方(filtered-x least mean square,FxLMS)算法在噪声主动控制时无法兼顾收敛速度和稳态误差的问题,提出了基于sigmoid-sinh分段函数的FxLMS(SSFxLMS)算法,并引入蚁狮算法对SFxLMS(sigmoid filtered-x least mean square)、ShFxLMS(sinh filtered-x least mean square)、SSFxLMS算法的参数进行优化。分别采用高斯白噪声和实测簇绒地毯织机噪声为输入信号,采用FxLMS、SFxLMS、ShFxLMS、SSFxLMS算法进行噪声主动控制仿真,对比分析这4种算法的性能。结果表明:与其他3种算法相比,采用SSFxLMS算法对高斯白噪声和簇绒地毯织机噪声进行控制时,误差信号的平均绝对值更小,平均降噪量与收敛速度也有大幅度提升。由此可知,SSFxLMS算法有效改善了FxLMS算法无法兼顾收敛速度和稳态误差的问题,研究结果为噪声主动控制算法设计提供了一定的参考。展开更多
针对目前配电网用户负荷数据高维度时序数据特征提取难、交叉数据聚类处理难、负荷数据精准标签化难等问题,文章提出面向用户负荷数据的基于降噪自编码器和改进粗糙模糊K均值的特征提取与标签定义模型(feature extraction and label def...针对目前配电网用户负荷数据高维度时序数据特征提取难、交叉数据聚类处理难、负荷数据精准标签化难等问题,文章提出面向用户负荷数据的基于降噪自编码器和改进粗糙模糊K均值的特征提取与标签定义模型(feature extraction and label definition model based on DAE and improve RFKM,FLMbD-iR)。FLMbD-iR通过降噪自编码器对原始用户负荷数据进行深度特征提取后,利用基于类簇规模不均衡度量的粗糙模糊K均值进行聚类,处理聚类中簇间交叉数据存在误差的缺陷,最后构建描述指标对典型日负荷曲线进行标签定义。实验采用美国电力负荷数据进行仿真模拟,实验结果显示本方法在用户负荷数据聚类处理上效果显著。展开更多
针对经典盲均衡算法收敛速度较慢和稳态误差较大的问题,提出了一种基于变步长恒模算法(Constant Modulus Algorithm, CMA)和判决引导的最小均方(Decision Directed Least Mean Square, DD-LMS)算法的双模式切换盲均衡算法。在算法收敛...针对经典盲均衡算法收敛速度较慢和稳态误差较大的问题,提出了一种基于变步长恒模算法(Constant Modulus Algorithm, CMA)和判决引导的最小均方(Decision Directed Least Mean Square, DD-LMS)算法的双模式切换盲均衡算法。在算法收敛初期采用CMA算法,以确保算法可以较快收敛。在收敛之后切换至DD-LMS算法,以进一步降低稳态误差。通过设定阈值来切换算法,取相邻多次迭代误差的平均值作为算法的切换值,以确保算法切换时机的合理性。另外,引入Softsign变步长函数并加入3个参数对该函数进行改进,使得Softsign变步长函数可以依据不同信道环境设定最佳参数,同时提高算法的收敛速度。仿真结果表明,在卫星通用信道条件下,所提算法的收敛迭代次数约为1 000次,稳态误差为-12 dB,在信噪比为15 dB时,误码率为1×10~(-6)。与相关算法对比,所提算法的收敛速度较高,误码率和稳态误差较低。展开更多
In coastal environments, fine-grain sediments often aggregate into large and porous flocs. ElectroMagnetic Current Meters (EMCM) and Laser In Situ Scattering and Transmissometry (LISST-ST) have been deployed withi...In coastal environments, fine-grain sediments often aggregate into large and porous flocs. ElectroMagnetic Current Meters (EMCM) and Laser In Situ Scattering and Transmissometry (LISST-ST) have been deployed within a Spartina alterniflora marsh of the Luoyuan Bay in Fujian Province, China, to measure the current velocity, the floc size and the settling velocity between 15 and 22 January 2008. During the observations, the near-bed water was collected in order to obtain the suspended sediment concentration (SSC) and constituent grain size. Data show that: (1) the nearbed current velocities vary from 0.1 to 5.6 cm/s in the central Spartina alterniflora marsh and 0.1–12.5 cm/s at the edge; (2) the SSCs vary from 47 to 188 mg/dm 3 . The mean grain size of constituent grains varies from 7.0 to 9.6 μm, and the mean floc sizes (MFS) vary from 30.4 to 69.4 μm. The relationship between the mean floc size and settling velocity can be described as: w s =ad b , in which w s is the floc settling velocity (mm/s), a and b are coefficients. The floc settling velocity varies from 0.17 to 0.32 mm/s, with a mean value of 0.26 mm/s, and the floc settling velocity during the flood tide is higher than that during the ebb tide. The current velocity and the SSC are the main factors controlling the flocculation processes and the floc settling velocity.展开更多
文摘This paper presents a method of measuring the particle mean size and dust concentration by small angle near forward light scattering optics and the extinction theory. Its theory is based on Fraunhofer diffraction theory which is the approximation of Mie scattering within the forward Fraunhofer diffraction lobe, and Rosin Rammler function is introduced to describe the particle size distribution in two phase flow in advance. Compared with the values by the sample weight method, the measurement results have a reasonable agreement. The present work has demonstrated that this method will be probably used to monitor the parameters of two phase flow.
基金Foundation item:Project (2006BAB02A02) supported by the National Key Technology R&D Program during the 11th Five-year Plan Period of ChinaProject (CX2011B119) supported by the Graduated Students' Research and Innovation Fund of Hunan Province, ChinaProject (2009ssxt230) supported by the Central South University Innovation Fund,China
文摘Aiming at the problems of the traditional method of assessing distribution of particle size in bench blasting, a support vector machines (SVMs) regression methodology was used to predict the mean particle size (X50) resulting from rock blast fragmentation in various mines based on the statistical learning theory. The data base consisted of blast design parameters, explosive parameters, modulus of elasticity and in-situ block size. The seven input independent variables used for the SVMs model for the prediction of X50 of rock blast fragmentation were the ratio of bench height to drilled burden (H/B), ratio of spacing to burden (S/B), ratio of burden to hole diameter (B/D), ratio of stemming to burden (T/B), powder factor (Pf), modulus of elasticity (E) and in-situ block size (XB). After using the 90 sets of the measured data in various mines and rock formations in the world for training and testing, the model was applied to 12 another blast data for validation of the trained support vector regression (SVR) model. The prediction results of SVR were compared with those of artificial neural network (ANN), multivariate regression analysis (MVRA) models, conventional Kuznetsov method and the measured X50 values. The proposed method shows promising results and the prediction accuracy of SVMs model is acceptable.
基金NSF of China under Grant Nos.10071071 and 10471123
文摘The purpose of this paper is to investigate the mean size formula of wavelet packets in Lp for 0 〈 p ≤ ∞. We generalize a mean size formula of wavelet packets given in terms of the p-norm joint spectral radius and we also give some asymptotic formulas for the Lp-norm or quasi-norm on the subdivision trees. All results will be given in the general setting,
基金funded by the National Natural Science Foundation of China(Grant No.42177164)the Innovation-Driven Project of Central South University(Grant No.2020CX040)supported by China Scholarship Council(Grant No.202006370006)。
文摘The main purpose of blasting operation is to produce desired and optimum mean size rock fragments.Smaller or fine fragments cause the loss of ore during loading and transportation,whereas large or coarser fragments need to be further processed,which enhances production cost.Therefore,accurate prediction of rock fragmentation is crucial in blasting operations.Mean fragment size(MFS) is a crucial index that measures the goodness of blasting designs.Over the past decades,various models have been proposed to evaluate and predict blasting fragmentation.Among these models,artificial intelligence(AI)-based models are becoming more popular due to their outstanding prediction results for multiinfluential factors.In this study,support vector regression(SVR) techniques are adopted as the basic prediction tools,and five types of optimization algorithms,i.e.grid search(GS),grey wolf optimization(GWO),particle swarm optimization(PSO),genetic algorithm(GA) and salp swarm algorithm(SSA),are implemented to improve the prediction performance and optimize the hyper-parameters.The prediction model involves 19 influential factors that constitute a comprehensive blasting MFS evaluation system based on AI techniques.Among all the models,the GWO-v-SVR-based model shows the best comprehensive performance in predicting MFS in blasting operation.Three types of mathematical indices,i.e.mean square error(MSE),coefficient of determination(R^(2)) and variance accounted for(VAF),are utilized for evaluating the performance of different prediction models.The R^(2),MSE and VAF values for the training set are 0.8355,0.00138 and 80.98,respectively,whereas 0.8353,0.00348 and 82.41,respectively for the testing set.Finally,sensitivity analysis is performed to understand the influence of input parameters on MFS.It shows that the most sensitive factor in blasting MFS is the uniaxial compressive strength.
文摘The influence of mean particle size on magnetic properties ofSm ( Co0.72Fe0. 15 Cu0. 1Zr0. 03 ) 7.5 sintered magnets, prepared by the conventional powder metallurgy method, was studied. With increasing ballmilling time, mean particle size decreases, specific surface increases, and sintering temperature decreases. The optimum sintering temperature of powders fabricated by baH-milling for 5, 7, 9 and 11 h are 1225, 1225, 1215 and 1215℃ respectively. The optimum value of Br, (BH)max, Hob and Hci of Sm ( Co0.72Fe0. 15 Cu0. 1Zr0. 03 ) 7.5 sintered magnets with powders ball-milling for 9 h and sintering at 1215 ℃ can reach 0.94 T, 708.4 kA·m^-1, 171.9 kJ·m^-3 and 2276.6 kA·m^-1 respectively, and the irreversible flux loss is less than 5 % after the sample ageing at 550 ℃ for 2 h, so the temperature stability improves and the magnets may be expected to be applied in the circumstances of 550 ℃.
基金Projects(41204079,41504086)supported by the National Natural Science Foundation of ChinaProject(20160101281JC)supported by the Natural Science Foundation of Jilin Province,ChinaProjects(2016M590258,2015T80301)supported by the Postdoctoral Science Foundation of China
文摘Nano-volt magnetic resonance sounding(MRS) signals are sufficiently weak so that during the actual measurement, they are affected by environmental electromagnetic noise, leading to inaccuracy of the extracted characteristic parameters and hindering effective inverse interpretation. Considering the complexity and non-homogeneous spatial distribution of environmental noise and based on the theory of adaptive noise cancellation, a model system for noise cancellation using multi-reference coils was constructed to receive MRS signals. The feasibility of this system with theoretical calculation and experiments was analyzed and a modified sigmoid variable step size least mean square(SVSLMS) algorithm for noise cancellation was presented. The simulation results show that, the multi-reference coil method performs better than the single one on both signal-to-noise ratio(SNR) improvement and signal waveform optimization after filtering, under the condition of different noise correlations in the reference coils and primary detecting coils and different SNRs. In particular, when the noise correlation is poor and the SNR<0, the SNR can be improved by more than 8 dB after filtering with multi-reference coils. And the average fitting errors for initial amplitude and relaxation time are within 5%. Compared with the normalized least mean square(NLMS) algorithm and multichannel Wiener filter and processing field test data, the effectiveness of the proposed method is verified.
文摘为改善滤波-x最小均方(filtered-x least mean square,FxLMS)算法在噪声主动控制时无法兼顾收敛速度和稳态误差的问题,提出了基于sigmoid-sinh分段函数的FxLMS(SSFxLMS)算法,并引入蚁狮算法对SFxLMS(sigmoid filtered-x least mean square)、ShFxLMS(sinh filtered-x least mean square)、SSFxLMS算法的参数进行优化。分别采用高斯白噪声和实测簇绒地毯织机噪声为输入信号,采用FxLMS、SFxLMS、ShFxLMS、SSFxLMS算法进行噪声主动控制仿真,对比分析这4种算法的性能。结果表明:与其他3种算法相比,采用SSFxLMS算法对高斯白噪声和簇绒地毯织机噪声进行控制时,误差信号的平均绝对值更小,平均降噪量与收敛速度也有大幅度提升。由此可知,SSFxLMS算法有效改善了FxLMS算法无法兼顾收敛速度和稳态误差的问题,研究结果为噪声主动控制算法设计提供了一定的参考。
文摘针对目前配电网用户负荷数据高维度时序数据特征提取难、交叉数据聚类处理难、负荷数据精准标签化难等问题,文章提出面向用户负荷数据的基于降噪自编码器和改进粗糙模糊K均值的特征提取与标签定义模型(feature extraction and label definition model based on DAE and improve RFKM,FLMbD-iR)。FLMbD-iR通过降噪自编码器对原始用户负荷数据进行深度特征提取后,利用基于类簇规模不均衡度量的粗糙模糊K均值进行聚类,处理聚类中簇间交叉数据存在误差的缺陷,最后构建描述指标对典型日负荷曲线进行标签定义。实验采用美国电力负荷数据进行仿真模拟,实验结果显示本方法在用户负荷数据聚类处理上效果显著。
基金The National Natural Science Foundation of China under contract No. 40606012the Scientific Research Foundation of Third Institute of Oceanography, State Oceanic Administration under contract No. 2009015
文摘In coastal environments, fine-grain sediments often aggregate into large and porous flocs. ElectroMagnetic Current Meters (EMCM) and Laser In Situ Scattering and Transmissometry (LISST-ST) have been deployed within a Spartina alterniflora marsh of the Luoyuan Bay in Fujian Province, China, to measure the current velocity, the floc size and the settling velocity between 15 and 22 January 2008. During the observations, the near-bed water was collected in order to obtain the suspended sediment concentration (SSC) and constituent grain size. Data show that: (1) the nearbed current velocities vary from 0.1 to 5.6 cm/s in the central Spartina alterniflora marsh and 0.1–12.5 cm/s at the edge; (2) the SSCs vary from 47 to 188 mg/dm 3 . The mean grain size of constituent grains varies from 7.0 to 9.6 μm, and the mean floc sizes (MFS) vary from 30.4 to 69.4 μm. The relationship between the mean floc size and settling velocity can be described as: w s =ad b , in which w s is the floc settling velocity (mm/s), a and b are coefficients. The floc settling velocity varies from 0.17 to 0.32 mm/s, with a mean value of 0.26 mm/s, and the floc settling velocity during the flood tide is higher than that during the ebb tide. The current velocity and the SSC are the main factors controlling the flocculation processes and the floc settling velocity.