This paper concerns the reconstruction of a dynamic system based on phase space continuation of monthly meantemperature iD time series and the assumption that the equation for the time-varying evolution of phase space...This paper concerns the reconstruction of a dynamic system based on phase space continuation of monthly meantemperature iD time series and the assumption that the equation for the time-varying evolution of phase space statevariables contains linear and nonlinear quadratic terms. followed by the fitting of the dataset subjected to continuation so as to get, by the least square method. the coefficients of the terms, of which those of greater variance contribution are retained for use. Results show that the obtained low-order system may be used to describe nonlinear properties of the short range climate variation shown by monthly mean temperature series.展开更多
Many forecasting models based on the concepts of Fuzzy time series have been proposed in the past decades. These models have been widely applied to various problem domains, especially in dealing with forecasting probl...Many forecasting models based on the concepts of Fuzzy time series have been proposed in the past decades. These models have been widely applied to various problem domains, especially in dealing with forecasting problems in which historical data are linguistic values. In this paper, we present a new fuzzy time series forecasting model, which uses the historical data as the universe of discourse and uses the K-means clustering algorithm to cluster the universe of discourse, then adjust the clusters into intervals. The proposed method is applied for forecasting University enrollment of Alabama. It is shown that the proposed model achieves a significant improvement in forecasting accuracy as compared to other fuzzy time series forecasting models.展开更多
The rolling bearing friction torque which is characterized by its uncertainty and nonlinearity affects heavily the dynamic performance of a system such as missiles, spacecrafts and radars, etc. It is difficult to use ...The rolling bearing friction torque which is characterized by its uncertainty and nonlinearity affects heavily the dynamic performance of a system such as missiles, spacecrafts and radars, etc. It is difficult to use the classical statistical theory to evaluate the dynamic evaluation of the rolling bearing friction torque for the lack of prior information about both probability distribution and trends. For this reason, based on the information poor system theory and combined with the correlation dimension in chaos theory, the concepts about the mean of the dynamic fluctuant range (MDFR) and the grey relation are proposed to resolve the problem about evaluating the nonlinear characteristic and the dynamic uncertainty of the rolling bearing friction torque. Friction torque experiments are done for three types of the rolling bearings marked with HKTA, HKTB and HKTC separately; meantime, the correlation dimension and MDFR are calculated to describe the nonlinear characteristic and the dynamic uncertainty of the friction torque, respectively. And the experiments reveal that there is a certain grey relation between the nonlinear characteristic and the dynamic uncertainty of the rolling bearing friction torque, viz. MDFR will become the nonlinear increasing trend with the correlation dimension increasing. Under the condition of fewer characteristic data and the lack of prior information about both probability distribution and trends, the unitive evaluation for the nonlinear characteristic and the dynamic uncertainty of the rolling bearing friction torque is realized with the grey confidence level of 87.7%-96.3%.展开更多
A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is ...A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is improved in outliers operation and distance in the clusters and among the clusters. Firstly, the input data sets are optimized and their coherence is ensured, the region scale algorithm is modified and non-isometric multi scale region fuzzy time series model is built. At the same time, the particle swarm optimization algorithm about the particle speed, location and inertia weight value is improved, this method is used to optimize the parameters of support vector machine, construct the combined forecast model, build the dynamic parallel forecast model, and calculate the dynamic weight values and regard the product of the weight value and forecast value to be the final forecast values. At last, the example shows the improved forecast model is effective and accurate.展开更多
Considering the recent developments in deep learning, it has become increasingly important to verify what methods are valid for the prediction of multivariate time-series data. In this study, we propose a novel method...Considering the recent developments in deep learning, it has become increasingly important to verify what methods are valid for the prediction of multivariate time-series data. In this study, we propose a novel method of time-series prediction employing multiple deep learners combined with a Bayesian network where training data is divided into clusters using K-means clustering. We decided how many clusters are the best for K-means with the Bayesian information criteria. Depending on each cluster, the multiple deep learners are trained. We used three types of deep learners: deep neural network (DNN), recurrent neural network (RNN), and long short-term memory (LSTM). A naive Bayes classifier is used to determine which deep learner is in charge of predicting a particular time-series. Our proposed method will be applied to a set of financial time-series data, the Nikkei Average Stock price, to assess the accuracy of the predictions made. Compared with the conventional method of employing a single deep learner to acquire all the data, it is demonstrated by our proposed method that F-value and accuracy are improved.展开更多
传统k-means聚类算法是对某个时间片上的静态数据集合进行独立的聚类分析,但对于时间序列数据仅仅是多次静态聚类分析的重复应用。当数据量过大时,算法的时间开销将大大增加。为此,本文提出了一种时间序列数据的动态k-means聚类算法(Dyn...传统k-means聚类算法是对某个时间片上的静态数据集合进行独立的聚类分析,但对于时间序列数据仅仅是多次静态聚类分析的重复应用。当数据量过大时,算法的时间开销将大大增加。为此,本文提出了一种时间序列数据的动态k-means聚类算法(Dynamic k-means Clustering Algorithm for Time Series Data,DKCA/TSD)。该算法通过时间序列的前一时刻最优质心的结果,利用数据之间的关联性进行下一时刻的聚类,从而减少算法的迭代次数,提高时间效率。实验结果表明:对于时间序列数据,DKCA/TSD算法相对于k-means算法时间效率上有很大提高。展开更多
Production logistics involve the co-ordination of ac tivities such as production and materials control (PMC), inventory management, p roduct life cycle management, etc. Those activities demand for an accurate forec as...Production logistics involve the co-ordination of ac tivities such as production and materials control (PMC), inventory management, p roduct life cycle management, etc. Those activities demand for an accurate forec asting model. However, the conventional methods of making sell and buy decision based on human forecast or conventional moving average and exponential smoothing methods is no longer be sufficient to meet the future need. Furthermore, the un derlying statistics of the market information change from time to time due to a number of reasons such as change of global economic environment, government poli cies and business risks. This demands for highly adaptive forecasting model which is robust enough to response and adapt well to the fast changes in the dat a characteristics, in other words, the trajectory of the "dynamic characteristic s" of the data. In this paper, an adaptive time-series modelling method was proposed for short -term dynamic forecasting. The method employs an autoregressive (AR) time-seri es model to carry out the forecasting process. A modified least mean square (MLM S) adaptive filter algorithm was established for adjusting the AR model coeffici ents so as to minimise the sum of squared of forecasting errors. A prototype dyn amic forecasting system was built based on the adaptive time-series modelling m ethod. Basically, the dynamic forecasting system can be divided into two phases, i.e. the Learning Phase and the Application Phase. The learning procedures star t with the determination of upper limit of the adaptation gain based on the conv ergence in the mean square criterion. Hence, the optimum ELMS filter parameters are determined using an iteration algorithm which changes each filter parameter i.e. the order, the adaptation gain andthe values initial coefficient vector on e by one inside a predetermined iteration range. The set of parameters which giv es the minimum value for sum of squared errors within the iteration range is sel ected as the optimum set of filter parameters. In the Application Phase, the sys tem is operated under a real-time environment. The sampled data is processed by the optimised ELMS filter and the forecasted data are calculated based on the a daptive time-series model. The error of forecasting is continuously monitored w ithin the predefined tolerance. When the system detects excessive forecasting er ror, a feedback alarm signal was issued for system re-calibration. Experimental results indicated that the convergence rate and sum of squared erro rs during initial adaptation could be significantly improved using the MLMS algorithm. The performance of the system was verified through a series of experi ments conducted on the forecast of materials demand and costing in productio n logistics. Satisfactory results were achieved with the forecast errors confini ng within in most instances. Further applications of the system can be found i n sales demand forecast, inventory management as well as collaborative planning, forecast and replenishment (CPFR) in logistics engineering.展开更多
The paper analyzes the theory and application of Markowitz Mean-Variance Model and CAPM model. Firstly, it explains the development process and standpoints of two models and deduces the whole process in detail. Then 3...The paper analyzes the theory and application of Markowitz Mean-Variance Model and CAPM model. Firstly, it explains the development process and standpoints of two models and deduces the whole process in detail. Then 30 stocks are choosen from Shangzheng 50 stocks and are testified whether the prices of Shanghai stocks conform to the two models. With the technique of time series and panel data analysis, the research on the stock risk and effective portfolio by ORIGIN and MATLAB software is conducted. The result shows that Shanghai stock market conforms to Markowitz Mean-Variance Model to a certain extent and can give investors reliable suggestion to gain higher return, but there is no positive relation between system risk and profit ratio and CAPM doesn't function well in China's security market.展开更多
The chaoticity of daily mean temperature time series is investigated with complex systems theory. The data set that has been used in this analysis consists of daily mean temperature recorded at four stations in China....The chaoticity of daily mean temperature time series is investigated with complex systems theory. The data set that has been used in this analysis consists of daily mean temperature recorded at four stations in China. The power spectrums axe used to obtain some preliminaxy information regaxding the temperature time series. R/S analysis provides evidence for fractaiity in temperature time series. Cao method and correlation dimension, as well as the largest Lyapunov exponent, give consistent results, which does not exclude the possibility of deterministic chaos for the four daily mean temperature series. The research provides a principled basis for further study of temperature data with nonlinear dynamical methods.展开更多
The COVID-19 pandemic has caused an unprecedented spike in confirmed cases in 230 countries globally. In this work, a set of data from the COVID-19 coronavirus outbreak has been subjected to two well-known unsupervise...The COVID-19 pandemic has caused an unprecedented spike in confirmed cases in 230 countries globally. In this work, a set of data from the COVID-19 coronavirus outbreak has been subjected to two well-known unsupervised learning techniques: K-means clustering and correlation. The COVID-19 virus has infected several nations, and K-means automatically looks for undiscovered clusters of those infections. To examine the spread of COVID-19 before a vaccine becomes widely available, this work has used unsupervised approaches to identify the crucial county-level confirmed cases, death cases, recover cases, total_cases_per_million, and total_deaths_per_million aspects of county-level variables. We combined countries into significant clusters using this feature subspace to assist more in-depth disease analysis efforts. As a result, we used a clustering technique to examine various trends in COVID-19 incidence and mortality across nations. This technique took the key components of a trajectory and incorporates them into a K-means clustering process. We separated the trend lines into measures that characterize various features of a trend. The measurements were first reduced in dimension, then clustered using a K-means algorithm. This method was used to individually calculate the incidence and death rates and then compare them.展开更多
文摘This paper concerns the reconstruction of a dynamic system based on phase space continuation of monthly meantemperature iD time series and the assumption that the equation for the time-varying evolution of phase space statevariables contains linear and nonlinear quadratic terms. followed by the fitting of the dataset subjected to continuation so as to get, by the least square method. the coefficients of the terms, of which those of greater variance contribution are retained for use. Results show that the obtained low-order system may be used to describe nonlinear properties of the short range climate variation shown by monthly mean temperature series.
文摘Many forecasting models based on the concepts of Fuzzy time series have been proposed in the past decades. These models have been widely applied to various problem domains, especially in dealing with forecasting problems in which historical data are linguistic values. In this paper, we present a new fuzzy time series forecasting model, which uses the historical data as the universe of discourse and uses the K-means clustering algorithm to cluster the universe of discourse, then adjust the clusters into intervals. The proposed method is applied for forecasting University enrollment of Alabama. It is shown that the proposed model achieves a significant improvement in forecasting accuracy as compared to other fuzzy time series forecasting models.
基金supported by National Natural Science Foundation of China (Grant No. 50675011)Doctoral Scientific Research Enabling Foundation of Henan University of Science and Technology,China (Grant No. 09001318)
文摘The rolling bearing friction torque which is characterized by its uncertainty and nonlinearity affects heavily the dynamic performance of a system such as missiles, spacecrafts and radars, etc. It is difficult to use the classical statistical theory to evaluate the dynamic evaluation of the rolling bearing friction torque for the lack of prior information about both probability distribution and trends. For this reason, based on the information poor system theory and combined with the correlation dimension in chaos theory, the concepts about the mean of the dynamic fluctuant range (MDFR) and the grey relation are proposed to resolve the problem about evaluating the nonlinear characteristic and the dynamic uncertainty of the rolling bearing friction torque. Friction torque experiments are done for three types of the rolling bearings marked with HKTA, HKTB and HKTC separately; meantime, the correlation dimension and MDFR are calculated to describe the nonlinear characteristic and the dynamic uncertainty of the friction torque, respectively. And the experiments reveal that there is a certain grey relation between the nonlinear characteristic and the dynamic uncertainty of the rolling bearing friction torque, viz. MDFR will become the nonlinear increasing trend with the correlation dimension increasing. Under the condition of fewer characteristic data and the lack of prior information about both probability distribution and trends, the unitive evaluation for the nonlinear characteristic and the dynamic uncertainty of the rolling bearing friction torque is realized with the grey confidence level of 87.7%-96.3%.
基金supported by the National Defense Preliminary Research Program of China(A157167)the National Defense Fundamental of China(9140A19030314JB35275)
文摘A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is improved in outliers operation and distance in the clusters and among the clusters. Firstly, the input data sets are optimized and their coherence is ensured, the region scale algorithm is modified and non-isometric multi scale region fuzzy time series model is built. At the same time, the particle swarm optimization algorithm about the particle speed, location and inertia weight value is improved, this method is used to optimize the parameters of support vector machine, construct the combined forecast model, build the dynamic parallel forecast model, and calculate the dynamic weight values and regard the product of the weight value and forecast value to be the final forecast values. At last, the example shows the improved forecast model is effective and accurate.
文摘Considering the recent developments in deep learning, it has become increasingly important to verify what methods are valid for the prediction of multivariate time-series data. In this study, we propose a novel method of time-series prediction employing multiple deep learners combined with a Bayesian network where training data is divided into clusters using K-means clustering. We decided how many clusters are the best for K-means with the Bayesian information criteria. Depending on each cluster, the multiple deep learners are trained. We used three types of deep learners: deep neural network (DNN), recurrent neural network (RNN), and long short-term memory (LSTM). A naive Bayes classifier is used to determine which deep learner is in charge of predicting a particular time-series. Our proposed method will be applied to a set of financial time-series data, the Nikkei Average Stock price, to assess the accuracy of the predictions made. Compared with the conventional method of employing a single deep learner to acquire all the data, it is demonstrated by our proposed method that F-value and accuracy are improved.
文摘传统k-means聚类算法是对某个时间片上的静态数据集合进行独立的聚类分析,但对于时间序列数据仅仅是多次静态聚类分析的重复应用。当数据量过大时,算法的时间开销将大大增加。为此,本文提出了一种时间序列数据的动态k-means聚类算法(Dynamic k-means Clustering Algorithm for Time Series Data,DKCA/TSD)。该算法通过时间序列的前一时刻最优质心的结果,利用数据之间的关联性进行下一时刻的聚类,从而减少算法的迭代次数,提高时间效率。实验结果表明:对于时间序列数据,DKCA/TSD算法相对于k-means算法时间效率上有很大提高。
文摘Production logistics involve the co-ordination of ac tivities such as production and materials control (PMC), inventory management, p roduct life cycle management, etc. Those activities demand for an accurate forec asting model. However, the conventional methods of making sell and buy decision based on human forecast or conventional moving average and exponential smoothing methods is no longer be sufficient to meet the future need. Furthermore, the un derlying statistics of the market information change from time to time due to a number of reasons such as change of global economic environment, government poli cies and business risks. This demands for highly adaptive forecasting model which is robust enough to response and adapt well to the fast changes in the dat a characteristics, in other words, the trajectory of the "dynamic characteristic s" of the data. In this paper, an adaptive time-series modelling method was proposed for short -term dynamic forecasting. The method employs an autoregressive (AR) time-seri es model to carry out the forecasting process. A modified least mean square (MLM S) adaptive filter algorithm was established for adjusting the AR model coeffici ents so as to minimise the sum of squared of forecasting errors. A prototype dyn amic forecasting system was built based on the adaptive time-series modelling m ethod. Basically, the dynamic forecasting system can be divided into two phases, i.e. the Learning Phase and the Application Phase. The learning procedures star t with the determination of upper limit of the adaptation gain based on the conv ergence in the mean square criterion. Hence, the optimum ELMS filter parameters are determined using an iteration algorithm which changes each filter parameter i.e. the order, the adaptation gain andthe values initial coefficient vector on e by one inside a predetermined iteration range. The set of parameters which giv es the minimum value for sum of squared errors within the iteration range is sel ected as the optimum set of filter parameters. In the Application Phase, the sys tem is operated under a real-time environment. The sampled data is processed by the optimised ELMS filter and the forecasted data are calculated based on the a daptive time-series model. The error of forecasting is continuously monitored w ithin the predefined tolerance. When the system detects excessive forecasting er ror, a feedback alarm signal was issued for system re-calibration. Experimental results indicated that the convergence rate and sum of squared erro rs during initial adaptation could be significantly improved using the MLMS algorithm. The performance of the system was verified through a series of experi ments conducted on the forecast of materials demand and costing in productio n logistics. Satisfactory results were achieved with the forecast errors confini ng within in most instances. Further applications of the system can be found i n sales demand forecast, inventory management as well as collaborative planning, forecast and replenishment (CPFR) in logistics engineering.
基金Supported by Zhejiang Provincial Natural Science Foundation (Y604137)Student Research Training Program in Zhejiang University
文摘The paper analyzes the theory and application of Markowitz Mean-Variance Model and CAPM model. Firstly, it explains the development process and standpoints of two models and deduces the whole process in detail. Then 30 stocks are choosen from Shangzheng 50 stocks and are testified whether the prices of Shanghai stocks conform to the two models. With the technique of time series and panel data analysis, the research on the stock risk and effective portfolio by ORIGIN and MATLAB software is conducted. The result shows that Shanghai stock market conforms to Markowitz Mean-Variance Model to a certain extent and can give investors reliable suggestion to gain higher return, but there is no positive relation between system risk and profit ratio and CAPM doesn't function well in China's security market.
文摘The chaoticity of daily mean temperature time series is investigated with complex systems theory. The data set that has been used in this analysis consists of daily mean temperature recorded at four stations in China. The power spectrums axe used to obtain some preliminaxy information regaxding the temperature time series. R/S analysis provides evidence for fractaiity in temperature time series. Cao method and correlation dimension, as well as the largest Lyapunov exponent, give consistent results, which does not exclude the possibility of deterministic chaos for the four daily mean temperature series. The research provides a principled basis for further study of temperature data with nonlinear dynamical methods.
文摘The COVID-19 pandemic has caused an unprecedented spike in confirmed cases in 230 countries globally. In this work, a set of data from the COVID-19 coronavirus outbreak has been subjected to two well-known unsupervised learning techniques: K-means clustering and correlation. The COVID-19 virus has infected several nations, and K-means automatically looks for undiscovered clusters of those infections. To examine the spread of COVID-19 before a vaccine becomes widely available, this work has used unsupervised approaches to identify the crucial county-level confirmed cases, death cases, recover cases, total_cases_per_million, and total_deaths_per_million aspects of county-level variables. We combined countries into significant clusters using this feature subspace to assist more in-depth disease analysis efforts. As a result, we used a clustering technique to examine various trends in COVID-19 incidence and mortality across nations. This technique took the key components of a trajectory and incorporates them into a K-means clustering process. We separated the trend lines into measures that characterize various features of a trend. The measurements were first reduced in dimension, then clustered using a K-means algorithm. This method was used to individually calculate the incidence and death rates and then compare them.