In this paper, the solution, more general than [1], of a weak singular integral equation integral(0)(pi)integral(-infinity)(infinity) p(s,psi)d sk(psi)d psi=F(r,theta), (r,theta)epsilon (Q) over bar=Q+partial derivati...In this paper, the solution, more general than [1], of a weak singular integral equation integral(0)(pi)integral(-infinity)(infinity) p(s,psi)d sk(psi)d psi=F(r,theta), (r,theta)epsilon (Q) over bar=Q+partial derivative Q subject to constraint p(s,psi)=0, for (s,psi)=(r,theta)is not an element of Q={r,theta)/F(r,theta)>c*} is found p=2/pi[root w g'(0)+integral(0)(w) root w-u g '(u)du] where k and F are given continuous functions; (s,psi) is a local polar coordinating with origin at M(r,theta); (r,theta) is the global polar coordinating with origin at O(0,0) F(r,theta)=c* (const.) is the boundary contour partial derivative Q of the considered range Q; g(w)=F(r,theta)/[pi k(psi(0))]; g'=dg/dw; w=N-r(2)sin(2)(theta+psi(0)); psi(0) and N are mean values. The solution shown in type (2.19) of [1] is a special case of the above solution and only suits F(r,theta)=w. The solution of a rigid cone contact with elastic half space, more simple and clear than Love's (1939), is given as an example of application.展开更多
This paper discusses use of approximations and the Integral Mean Value Theorem to show that 6 coefficients approximately describe the distortions of near surface inhomogeneities on the MT field of a horizontally layer...This paper discusses use of approximations and the Integral Mean Value Theorem to show that 6 coefficients approximately describe the distortions of near surface inhomogeneities on the MT field of a horizontally layered earth model. When these 6 coefficients are considered together with those of the magnetic field of a horizontally layered earth model,the analytic and approximate wave impedance equations can be derived for the MT response of a horizontally layered earth model with near-surface 2-D and 3-D inhomogeneities. These approximate wave impedance equations are used with inverted MT data for 2-D and 3-D forward modelling. Although these 6 coefficients cannot be determined before inversion,initial estimates can be used. The 6 coefficients and the asistivity and thickness of each layer of a horizontally layered earth can be obtained by using published inversion methods. The 6 coefficients give important informaion (depths and resistivities) on the near-surface inhomogenelties.The authors inverted 2-D and 3-D theoretical models for Fast Approximate Inversion of Magnetotelluric (FAIMT) data for a horizontally layered earth with near-surface inhomogeneities compares favorably with traditional invrsion methods, especially for inverting regional or basin structures. This method simplifies computation and gives a reasonable 1 -D geological model with fewer nonuniquenas problems.展开更多
文摘In this paper, the solution, more general than [1], of a weak singular integral equation integral(0)(pi)integral(-infinity)(infinity) p(s,psi)d sk(psi)d psi=F(r,theta), (r,theta)epsilon (Q) over bar=Q+partial derivative Q subject to constraint p(s,psi)=0, for (s,psi)=(r,theta)is not an element of Q={r,theta)/F(r,theta)>c*} is found p=2/pi[root w g'(0)+integral(0)(w) root w-u g '(u)du] where k and F are given continuous functions; (s,psi) is a local polar coordinating with origin at M(r,theta); (r,theta) is the global polar coordinating with origin at O(0,0) F(r,theta)=c* (const.) is the boundary contour partial derivative Q of the considered range Q; g(w)=F(r,theta)/[pi k(psi(0))]; g'=dg/dw; w=N-r(2)sin(2)(theta+psi(0)); psi(0) and N are mean values. The solution shown in type (2.19) of [1] is a special case of the above solution and only suits F(r,theta)=w. The solution of a rigid cone contact with elastic half space, more simple and clear than Love's (1939), is given as an example of application.
文摘This paper discusses use of approximations and the Integral Mean Value Theorem to show that 6 coefficients approximately describe the distortions of near surface inhomogeneities on the MT field of a horizontally layered earth model. When these 6 coefficients are considered together with those of the magnetic field of a horizontally layered earth model,the analytic and approximate wave impedance equations can be derived for the MT response of a horizontally layered earth model with near-surface 2-D and 3-D inhomogeneities. These approximate wave impedance equations are used with inverted MT data for 2-D and 3-D forward modelling. Although these 6 coefficients cannot be determined before inversion,initial estimates can be used. The 6 coefficients and the asistivity and thickness of each layer of a horizontally layered earth can be obtained by using published inversion methods. The 6 coefficients give important informaion (depths and resistivities) on the near-surface inhomogenelties.The authors inverted 2-D and 3-D theoretical models for Fast Approximate Inversion of Magnetotelluric (FAIMT) data for a horizontally layered earth with near-surface inhomogeneities compares favorably with traditional invrsion methods, especially for inverting regional or basin structures. This method simplifies computation and gives a reasonable 1 -D geological model with fewer nonuniquenas problems.