We prove that the Gini mean values S(a,b; x,y) are Schur harmonic convex with respect to (x,y)∈(0,∞)×(0,∞) if and only if (a, b) ∈{(a, b):a≥0,a ≥ b,a+b+1≥0}∪{(a,b):b≥0,b≥a,a+b+1≥0} ...We prove that the Gini mean values S(a,b; x,y) are Schur harmonic convex with respect to (x,y)∈(0,∞)×(0,∞) if and only if (a, b) ∈{(a, b):a≥0,a ≥ b,a+b+1≥0}∪{(a,b):b≥0,b≥a,a+b+1≥0} and Schur harmonic concave with respect to (x,y) ∈ (0,∞)×(0,∞) if and only if (a,b)∈{(a,b):a≤0,b≤0,a|b|1≤0}.展开更多
Let p and q be two distinct primes, epq(n) denotes the largest exponent of power pq which divides n. In this paper, we study the mean value properties of function epq(n), and give some hybrid mean value formulas f...Let p and q be two distinct primes, epq(n) denotes the largest exponent of power pq which divides n. In this paper, we study the mean value properties of function epq(n), and give some hybrid mean value formulas for epq(n) and Dirichlet divisor function d(n). Key words: largest exponent; asymptotic formula; hybrid mean value; Dirichlet divisor function d(n)展开更多
Let p≥5 be a prime. For any integer h, the Hardy sum is defined by H(h,p)=sum((-1)^(j+1+[(hj)/p]))from (p-1) to (j=1) which is related to the classical Dedekind sum. The mean values of the Hardy sum in short interval...Let p≥5 be a prime. For any integer h, the Hardy sum is defined by H(h,p)=sum((-1)^(j+1+[(hj)/p]))from (p-1) to (j=1) which is related to the classical Dedekind sum. The mean values of the Hardy sum in short intervals are studied by using the mean value theorems of Dirichlet L-functions.展开更多
The Schur convexity or concavity problem of the Gini mean values S(a, b; x, y) with respect to (x, y) ∈ (0, ∞) × (0, ∞) for fixed (a, b) ∈ ? × ? is still open. In this paper, we prove that S(a, b; x, y) ...The Schur convexity or concavity problem of the Gini mean values S(a, b; x, y) with respect to (x, y) ∈ (0, ∞) × (0, ∞) for fixed (a, b) ∈ ? × ? is still open. In this paper, we prove that S(a, b; x, y) is Schur convex with respect to (x, y) ∈ (0, ∞) × (0, ∞) if and only if (a, b) ∈ {(a, b): a ? 0, b ? 0, a + b ? 1}, and Schur concave with respect to (x, y) ∈ (0, ∞) × (0, ∞) if and only if (a, b) ∈ {(a, b): b ? 0, b ? a, a + b ? 1} ∩ {(a, b): a ? 0, a ? b, a + b ? 1}.展开更多
If n is a positive integer,let f (n) denote the number of positive integer solutions (n 1,n 2,n 3) of the Diophantine equation 4/n=1/n_1 + 1/n_2 + 1/n_3.For the prime number p,f (p) can be split into f 1 (p) + f 2 (p)...If n is a positive integer,let f (n) denote the number of positive integer solutions (n 1,n 2,n 3) of the Diophantine equation 4/n=1/n_1 + 1/n_2 + 1/n_3.For the prime number p,f (p) can be split into f 1 (p) + f 2 (p),where f i (p) (i=1,2) counts those solutions with exactly i of denominators n 1,n 2,n 3 divisible by p.In this paper,we shall study the estimate for mean values ∑ p<x f i (p),i=1,2,where p denotes the prime number.展开更多
In this paper,we use the elementary methods,the properties of Dirichlet character sums and the classical Gauss sums to study the estimation of the mean value of high-powers for a special character sum modulo a prime,a...In this paper,we use the elementary methods,the properties of Dirichlet character sums and the classical Gauss sums to study the estimation of the mean value of high-powers for a special character sum modulo a prime,and derive an exact computational formula.It can be conveniently programmed by the“Mathematica”software,by which we can get the exact results easily.展开更多
Let p be a prime, n be any positiv e integer, α(n,p) denotes the power of p in the factorization of n! . In this paper, we give an exact computing formula of the mean value ∑ n<Nα(n,p).
In this paper,by choosing some appropriate test functions,we prove the Weyl’s lemma for triharmonic functions based on the new type of mean value formulas.
The zonal averages of temperature (the so-called normal temperatures) for numerous parallels of latitude published between 1852 and 1913 by Dove, Forbes, Ferrel, Spitaler, Batchelder, Arrhenius, von Bezold, Hopfner, v...The zonal averages of temperature (the so-called normal temperatures) for numerous parallels of latitude published between 1852 and 1913 by Dove, Forbes, Ferrel, Spitaler, Batchelder, Arrhenius, von Bezold, Hopfner, von Hann, and Börnstein were used to quantify the global (spherical) and spheroidal mean near-surface temperature of the terrestrial atmosphere. Only the datasets of Dove and Forbes published in the 1850s provided global averages below 〈T〉=14°C, mainly due to the poor coverage of the Southern Hemisphere by observations during that time. The global averages derived from the distributions of normal temperatures published between 1877 and 1913 ranged from 〈T〉=14.0°C (Batchelder) to 〈T〉=15.1°C (Ferrel). The differences between the global and the spheroidal mean near-surface air temperature are marginal. To examine the uncertainty due to interannual variability and different years considered in the historic zonal mean temperature distributions, the historical normal temperatures were perturbed within ±2σ to obtain ensembles of 50 realizations for each dataset. Numerical integrations of the perturbed distributions indicate uncertainties in the global averages in the range of ±0.3°C to ±0.6°C and depended on the number of available normal temperatures. Compared to our results, the global mean temperature of 〈T〉=15.0°C published by von Hann in 1897 and von Bezold in 1901 and 1906 is notably too high, while 〈T〉=14.4°C published by von Hann in 1908 seems to be more adequate within the range of uncertainty. The HadCRUT4 record provided 〈T〉≌?13.7°C for 1851-1880 and 〈T〉=13.6°C for 1881-1910. The Berkeley record provided 〈T〉=13.6°C and 〈T〉≌?13.5°C for these periods, respectively. The NASA GISS record yielded 〈T〉=13.6°C for 1881-1910 as well. These results are notably lower than those based on the historic zonal means. For 1991-2018, the HadCRUT4, Berkeley, and NASA GISS records provided 〈T〉=14.4°C, 〈T〉=14.5°C, and 〈T〉=14.5°C, respectively. The comparison of the 1991-2018 globally averaged near-surface temperature with those derived from distributions of zonal temperature averages for numerous parallels of latitude suggests no change for the past 100 years.展开更多
This paper discussed asymptotic property of Taylor remainder 'mean value point' in normed Linear space. The asymptotic progerty of 'mean value point' is solved when f(n+i)(x0)h(n+i) = 0(i = 1, 2,..., p...This paper discussed asymptotic property of Taylor remainder 'mean value point' in normed Linear space. The asymptotic progerty of 'mean value point' is solved when f(n+i)(x0)h(n+i) = 0(i = 1, 2,..., p - 1) and f(n+p)(x0)h(h+p) don't exist. Meanwhile, achieve more general asymptotic estimation formula. Make many former results are just because of special case of the pager.展开更多
For the formal presentation about the definite problems of ultra-hyperbolic equations, the famous Asgeirsson mean value theorem has answered that Cauchy problems are ill-posed to ultra-hyperbolic partial differential ...For the formal presentation about the definite problems of ultra-hyperbolic equations, the famous Asgeirsson mean value theorem has answered that Cauchy problems are ill-posed to ultra-hyperbolic partial differential equations of the second-order. So it is important to develop Asgeirsson mean value theorem. The mean value of solution for the higher order equation hay been discussed primarily and has no exact result at present. The mean value theorem for the higher order equation can be deduced and satisfied generalized biaxial symmetry potential equation by using the result of Asgeirsson mean value theorem and the properties of derivation and integration. Moreover, the mean value formula can be obtained by using the regular solutions of potential equation and the special properties of Jacobi polynomials. Its converse theorem is also proved. The obtained results make it possible to discuss on continuation of the solutions and well posed problem.展开更多
In this paper, we introduce a new counting function a(m) related to the Lucas number, then use conjecture and induction methods to give an exact formula Ar(N)=α(n), (r=1,2,3) and prove them.
The main purpose of this paper is to use the analytic methods to study the hybrid mean value involving the hyper Cochrane sums, and give several sharp asymptotic formulae.
In this paper, we studies the relations between the mean value and the maximun norm of the infinite order entire functions which defined by legendre series. We obtained that if f(z) is an infinite order entire functio...In this paper, we studies the relations between the mean value and the maximun norm of the infinite order entire functions which defined by legendre series. We obtained that if f(z) is an infinite order entire function with a positive exponenatial lower order. then loaM (α) ~logMδ(α) ~ logMδ(α) (α→+∞).展开更多
The main purpose of this paper is using the analytic method to study the mean value properties of the arithmetical functions δk((m, n)), δk([m,n]/m),and give several interesting asymptotic formulae for them.
The mean value theorem for derivatives says that for a given function over a closed and bounded interval, there is a point <em>P</em> on the graph such that the tangent at <em>P</em> is paralle...The mean value theorem for derivatives says that for a given function over a closed and bounded interval, there is a point <em>P</em> on the graph such that the tangent at <em>P</em> is parallel to the secant through the two endpoints. The mean value theorem for definite integrals says that the area under the function is equal to the area of a rectangle whose base is the length of the interval and height of some point <em>Q</em> on the graph. These two theorems have been studied and utilized extensively and they form the backbone of many important theorems in different branches of mathematics. In this note, we pose the question: for what functions do the two points <em>P </em>and <em>Q</em> always coincide? We find that the only analytic functions satisfying this condition are linear or exponential functions.展开更多
In smart environments,more and more teaching data sources are uploaded to remote cloud centers which promote the development of the smart campus.The outsourcing of massive teaching data can reduce storage burden and c...In smart environments,more and more teaching data sources are uploaded to remote cloud centers which promote the development of the smart campus.The outsourcing of massive teaching data can reduce storage burden and computational cost,but causes some privacy concerns because those teaching data(especially personal image data)may contain personal private information.In this paper,a privacy-preserving image feature extraction algorithm is proposed by using mean value features.Clients use block scrambling and chaotic map to encrypt original images before uploading to the remote servers.Cloud servers can directly extract image mean value features from encrypted images.Experiments show the effectiveness and security of our algorithm.It can achieve information search over the encrypted images on the smart campus.展开更多
In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Su...In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.展开更多
Aim To study a method realizing noise control for a physical model of progressive wave in a duct. Methods A mathematical model was constructed and a transfer function of the adaptive system for noise control was als...Aim To study a method realizing noise control for a physical model of progressive wave in a duct. Methods A mathematical model was constructed and a transfer function of the adaptive system for noise control was also worked out; moreover, the effects of some algorithms such as RLS,LMS and LSL on noise control were analyzed and compared. Results Without the feedback of sound, the mean noise reduce value(MNRV) of 27 5 dB for broadband noise from 0 to 500?Hz in frequency were achieved. When acoustic feedback took place and an air stream loudspeaker was used, the MNRV was only about 4 9?dB. But if the loudspeaker had a plain frequency feature, MNRV was improved by 10 2?dB. Conclusion The technique is applied to ruducing the noise from engines' exhausted gas pipes. It is, in principle, used for noise cancelling in a closed three dimensional space.展开更多
Let T=T(n,e,α) be the number of fixed points o f RSA(n,e) that a re co prime with n=pq,and A,B be sets of prime numbers in (1,x) and (1,y) respectively. An estimation on the mean value M(A,B,e,α)=1 (#A)(#B)∑p∈...Let T=T(n,e,α) be the number of fixed points o f RSA(n,e) that a re co prime with n=pq,and A,B be sets of prime numbers in (1,x) and (1,y) respectively. An estimation on the mean value M(A,B,e,α)=1 (#A)(#B)∑p∈A,q∈B,(p,q)=1logT(pq,e,α) is given.展开更多
基金Supported by the NSFC (11071069)the NSF of Zhejiang Province (D7080080 and Y7080185)the Innovation Team Foundation of the Department of Education of Zhejiang Province (T200924)
文摘We prove that the Gini mean values S(a,b; x,y) are Schur harmonic convex with respect to (x,y)∈(0,∞)×(0,∞) if and only if (a, b) ∈{(a, b):a≥0,a ≥ b,a+b+1≥0}∪{(a,b):b≥0,b≥a,a+b+1≥0} and Schur harmonic concave with respect to (x,y) ∈ (0,∞)×(0,∞) if and only if (a,b)∈{(a,b):a≤0,b≤0,a|b|1≤0}.
文摘Let p and q be two distinct primes, epq(n) denotes the largest exponent of power pq which divides n. In this paper, we study the mean value properties of function epq(n), and give some hybrid mean value formulas for epq(n) and Dirichlet divisor function d(n). Key words: largest exponent; asymptotic formula; hybrid mean value; Dirichlet divisor function d(n)
基金Supported by the National Natural Science Foundation of China(11571277)Supported by the Science and Technology Program of Shaanxi Province(2016GY-077)
文摘Let p≥5 be a prime. For any integer h, the Hardy sum is defined by H(h,p)=sum((-1)^(j+1+[(hj)/p]))from (p-1) to (j=1) which is related to the classical Dedekind sum. The mean values of the Hardy sum in short intervals are studied by using the mean value theorems of Dirichlet L-functions.
基金supported by National Natural Science Foundation of China (Grant Nos. 60850005, 10771195)the Natural Science Foundation of Zhejiang Province (Grant Nos. D7080080, Y607128, Y7080185)
文摘The Schur convexity or concavity problem of the Gini mean values S(a, b; x, y) with respect to (x, y) ∈ (0, ∞) × (0, ∞) for fixed (a, b) ∈ ? × ? is still open. In this paper, we prove that S(a, b; x, y) is Schur convex with respect to (x, y) ∈ (0, ∞) × (0, ∞) if and only if (a, b) ∈ {(a, b): a ? 0, b ? 0, a + b ? 1}, and Schur concave with respect to (x, y) ∈ (0, ∞) × (0, ∞) if and only if (a, b) ∈ {(a, b): b ? 0, b ? a, a + b ? 1} ∩ {(a, b): a ? 0, a ? b, a + b ? 1}.
基金supported by National Natural Science Foundation of China (Grant No.11071235)
文摘If n is a positive integer,let f (n) denote the number of positive integer solutions (n 1,n 2,n 3) of the Diophantine equation 4/n=1/n_1 + 1/n_2 + 1/n_3.For the prime number p,f (p) can be split into f 1 (p) + f 2 (p),where f i (p) (i=1,2) counts those solutions with exactly i of denominators n 1,n 2,n 3 divisible by p.In this paper,we shall study the estimate for mean values ∑ p<x f i (p),i=1,2,where p denotes the prime number.
文摘In this paper,we use the elementary methods,the properties of Dirichlet character sums and the classical Gauss sums to study the estimation of the mean value of high-powers for a special character sum modulo a prime,and derive an exact computational formula.It can be conveniently programmed by the“Mathematica”software,by which we can get the exact results easily.
文摘Let p be a prime, n be any positiv e integer, α(n,p) denotes the power of p in the factorization of n! . In this paper, we give an exact computing formula of the mean value ∑ n<Nα(n,p).
基金Supported by National Natural Science Foundation of China(Grant Nos.11801006 and 12071489).
文摘In this paper,by choosing some appropriate test functions,we prove the Weyl’s lemma for triharmonic functions based on the new type of mean value formulas.
文摘The zonal averages of temperature (the so-called normal temperatures) for numerous parallels of latitude published between 1852 and 1913 by Dove, Forbes, Ferrel, Spitaler, Batchelder, Arrhenius, von Bezold, Hopfner, von Hann, and Börnstein were used to quantify the global (spherical) and spheroidal mean near-surface temperature of the terrestrial atmosphere. Only the datasets of Dove and Forbes published in the 1850s provided global averages below 〈T〉=14°C, mainly due to the poor coverage of the Southern Hemisphere by observations during that time. The global averages derived from the distributions of normal temperatures published between 1877 and 1913 ranged from 〈T〉=14.0°C (Batchelder) to 〈T〉=15.1°C (Ferrel). The differences between the global and the spheroidal mean near-surface air temperature are marginal. To examine the uncertainty due to interannual variability and different years considered in the historic zonal mean temperature distributions, the historical normal temperatures were perturbed within ±2σ to obtain ensembles of 50 realizations for each dataset. Numerical integrations of the perturbed distributions indicate uncertainties in the global averages in the range of ±0.3°C to ±0.6°C and depended on the number of available normal temperatures. Compared to our results, the global mean temperature of 〈T〉=15.0°C published by von Hann in 1897 and von Bezold in 1901 and 1906 is notably too high, while 〈T〉=14.4°C published by von Hann in 1908 seems to be more adequate within the range of uncertainty. The HadCRUT4 record provided 〈T〉≌?13.7°C for 1851-1880 and 〈T〉=13.6°C for 1881-1910. The Berkeley record provided 〈T〉=13.6°C and 〈T〉≌?13.5°C for these periods, respectively. The NASA GISS record yielded 〈T〉=13.6°C for 1881-1910 as well. These results are notably lower than those based on the historic zonal means. For 1991-2018, the HadCRUT4, Berkeley, and NASA GISS records provided 〈T〉=14.4°C, 〈T〉=14.5°C, and 〈T〉=14.5°C, respectively. The comparison of the 1991-2018 globally averaged near-surface temperature with those derived from distributions of zonal temperature averages for numerous parallels of latitude suggests no change for the past 100 years.
基金Supported by the Natural Seience Foundation of Henan Educational Committee(20031100036)
文摘This paper discussed asymptotic property of Taylor remainder 'mean value point' in normed Linear space. The asymptotic progerty of 'mean value point' is solved when f(n+i)(x0)h(n+i) = 0(i = 1, 2,..., p - 1) and f(n+p)(x0)h(h+p) don't exist. Meanwhile, achieve more general asymptotic estimation formula. Make many former results are just because of special case of the pager.
文摘For the formal presentation about the definite problems of ultra-hyperbolic equations, the famous Asgeirsson mean value theorem has answered that Cauchy problems are ill-posed to ultra-hyperbolic partial differential equations of the second-order. So it is important to develop Asgeirsson mean value theorem. The mean value of solution for the higher order equation hay been discussed primarily and has no exact result at present. The mean value theorem for the higher order equation can be deduced and satisfied generalized biaxial symmetry potential equation by using the result of Asgeirsson mean value theorem and the properties of derivation and integration. Moreover, the mean value formula can be obtained by using the regular solutions of potential equation and the special properties of Jacobi polynomials. Its converse theorem is also proved. The obtained results make it possible to discuss on continuation of the solutions and well posed problem.
基金Supported by the Education Department Foundation of Shaanxi Province(03JK213) Supported by the Weinan Teacher's College Foundation(03YKF001)
文摘In this paper, we introduce a new counting function a(m) related to the Lucas number, then use conjecture and induction methods to give an exact formula Ar(N)=α(n), (r=1,2,3) and prove them.
文摘The main purpose of this paper is to use the analytic methods to study the hybrid mean value involving the hyper Cochrane sums, and give several sharp asymptotic formulae.
文摘In this paper, we studies the relations between the mean value and the maximun norm of the infinite order entire functions which defined by legendre series. We obtained that if f(z) is an infinite order entire function with a positive exponenatial lower order. then loaM (α) ~logMδ(α) ~ logMδ(α) (α→+∞).
基金Supported by NSF of China(10671155)Supported by SF of Education Department of Shannxi Province(08JK291)
文摘The main purpose of this paper is using the analytic method to study the mean value properties of the arithmetical functions δk((m, n)), δk([m,n]/m),and give several interesting asymptotic formulae for them.
文摘The mean value theorem for derivatives says that for a given function over a closed and bounded interval, there is a point <em>P</em> on the graph such that the tangent at <em>P</em> is parallel to the secant through the two endpoints. The mean value theorem for definite integrals says that the area under the function is equal to the area of a rectangle whose base is the length of the interval and height of some point <em>Q</em> on the graph. These two theorems have been studied and utilized extensively and they form the backbone of many important theorems in different branches of mathematics. In this note, we pose the question: for what functions do the two points <em>P </em>and <em>Q</em> always coincide? We find that the only analytic functions satisfying this condition are linear or exponential functions.
基金A This work was supported in part by the National Natural Science Foundation of China(61872408)the Natural Science Foundation of Hunan Province(2020JJ4238)+2 种基金the Social Science Fund of Hunan Province(16YBA102)the Study and Innovative Experiment Project for College Students in HNFNU(YSXS1842)the Research Fund of Hunan Provincial Key Laboratory of Informationization Technology for Basic Education(2015TP1017).
文摘In smart environments,more and more teaching data sources are uploaded to remote cloud centers which promote the development of the smart campus.The outsourcing of massive teaching data can reduce storage burden and computational cost,but causes some privacy concerns because those teaching data(especially personal image data)may contain personal private information.In this paper,a privacy-preserving image feature extraction algorithm is proposed by using mean value features.Clients use block scrambling and chaotic map to encrypt original images before uploading to the remote servers.Cloud servers can directly extract image mean value features from encrypted images.Experiments show the effectiveness and security of our algorithm.It can achieve information search over the encrypted images on the smart campus.
文摘In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.
文摘Aim To study a method realizing noise control for a physical model of progressive wave in a duct. Methods A mathematical model was constructed and a transfer function of the adaptive system for noise control was also worked out; moreover, the effects of some algorithms such as RLS,LMS and LSL on noise control were analyzed and compared. Results Without the feedback of sound, the mean noise reduce value(MNRV) of 27 5 dB for broadband noise from 0 to 500?Hz in frequency were achieved. When acoustic feedback took place and an air stream loudspeaker was used, the MNRV was only about 4 9?dB. But if the loudspeaker had a plain frequency feature, MNRV was improved by 10 2?dB. Conclusion The technique is applied to ruducing the noise from engines' exhausted gas pipes. It is, in principle, used for noise cancelling in a closed three dimensional space.
基金Supported by the National Natural Science Foundation of China (1 0 2 71 0 37) and Zhejiang ProvincialNatural Scienceoundation(1 0 30 60 )
文摘Let T=T(n,e,α) be the number of fixed points o f RSA(n,e) that a re co prime with n=pq,and A,B be sets of prime numbers in (1,x) and (1,y) respectively. An estimation on the mean value M(A,B,e,α)=1 (#A)(#B)∑p∈A,q∈B,(p,q)=1logT(pq,e,α) is given.