In order to solve the model update problem in mean-shift based tracker, a novel mechanism is proposed. Kalman filter is employed to update object model by filtering object kernel-histogram using previous model and cur...In order to solve the model update problem in mean-shift based tracker, a novel mechanism is proposed. Kalman filter is employed to update object model by filtering object kernel-histogram using previous model and current candidate. A self-tuning method is used for adaptively adjust all the parameters of the filters under the analysis of the filtering residuals. In addition, hypothesis testing servers as the criterion for determining whether to accept filtering result. Therefore, the tracker has the ability to handle occlusion so as to avoid over-update. The experimental results show that our method can not only keep up with the object appearance and scale changes but also be robust to occlusion.展开更多
Wavelet transform was introduced to detect and eliminate outliers in time-frequency domain. The outlier rejection and multirate information extraction were initially incorporated by wavelet transform, a new outlier re...Wavelet transform was introduced to detect and eliminate outliers in time-frequency domain. The outlier rejection and multirate information extraction were initially incorporated by wavelet transform, a new outlier rejecting multirate model for state estimation was proposed. The model is applied to state estimation with interacting multiple model, as the outlier is eliminated and more reasonable multirate information is extracted, the estimation accuracy is greatly enhanced. The simulation results prove that the new model is robust to outliers and the estimation performance is significantly improved.展开更多
On the basis of the newly developed regression diagnostic analysis, the diagnostic method with the assessment of the outliers of the logistic regression model was set up and it was used to analyze the prognosis of the...On the basis of the newly developed regression diagnostic analysis, the diagnostic method with the assessment of the outliers of the logistic regression model was set up and it was used to analyze the prognosis of the patients with acute lymphatic leukemia.展开更多
In this papert we give an approach for detecting one or more outliers inrandomized linear model.The likelihood ratio test statistic and its distributions underthe null hypothesis and the alternative hypothesis are giv...In this papert we give an approach for detecting one or more outliers inrandomized linear model.The likelihood ratio test statistic and its distributions underthe null hypothesis and the alternative hypothesis are given. Furthermore,the robustnessof the test statistic in a certain sense is proved. Finally,the optimality properties of thetest are derived.展开更多
We introduce a new wavelet based procedure for detecting outliers in financial discrete time series.The procedure focuses on the analysis of residuals obtained from a model fit,and applied to the Generalized Autoregre...We introduce a new wavelet based procedure for detecting outliers in financial discrete time series.The procedure focuses on the analysis of residuals obtained from a model fit,and applied to the Generalized Autoregressive Conditional Heteroskedasticity(GARCH)like model,but not limited to these models.We apply the Maximal-Overlap Discrete Wavelet Transform(MODWT)to the residuals and compare their wavelet coefficients against quantile thresholds to detect outliers.Our methodology has several advantages over existing methods that make use of the standard Discrete Wavelet Transform(DWT).The series sample size does not need to be a power of 2 and the transform can explore any wavelet filter and be run up to the desired level.Simulated wavelet quantiles from a Normal and Student t-distribution are used as threshold for the maximum of the absolute value of wavelet coefficients.The performance of the procedure is illustrated and applied to two real series:the closed price of the Saudi Stock market and the S&P 500 index respectively.The efficiency of the proposed method is demonstrated and can be considered as a distinct important addition to the existing methods.展开更多
The study explored both Box and Jenkins, and iterative outlier detection procedures in determining the efficiency of ARIMA-GARCH-type models in the presence of outliers using the daily closing share price returns seri...The study explored both Box and Jenkins, and iterative outlier detection procedures in determining the efficiency of ARIMA-GARCH-type models in the presence of outliers using the daily closing share price returns series of four prominent banks in Nigeria (Skye (Polaris) bank, Sterling bank, Unity bank and Zenith bank) from January 3, 2006 to November 24, 2016. The series consists of 2690 observations for each bank. The data were obtained from the Nigerian Stock Exchange. Unconditional variance and kurtosis coefficient were used as criteria for measuring the efficiency of ARIMA-GARCH-type models and our findings revealed that kurtosis is a better criterion (as it is a true measure of outliers) than the unconditional variance (as it can be depleted or amplified by outliers). Specifically, the strength of this study is in showing the applicability and relevance of iterative methods in time series modeling.展开更多
An adaptive outlier controlling multirate model based on Hong’s multirate kinetic model was represented in order to resist the outliers and utilize their useful information. Wavelet transform was introduced to detect...An adaptive outlier controlling multirate model based on Hong’s multirate kinetic model was represented in order to resist the outliers and utilize their useful information. Wavelet transform was introduced to detect and control the outliers. The multirate information extraction and the controlling of outliers were properly integrated to establish an adaptive outlier controlling multirate model. The proposed model was applied to multisensor state fusion with interacting multiple model (IMM), and a robust interacting multisensor state fusion algorithm was established based on adaptive outlier controlling multirate model. The Monte-Carlo simulation shows that it could improve the accuracy of fusion estimation by 70% compared to Hong’s algorithm and at least 14% to Xiao’s algorithm.展开更多
The structural equation model (SEM) concept is generally influenced by the presence of outliers and controlling variables. To a very large extent, this could have consequential effects on the parameters and the model ...The structural equation model (SEM) concept is generally influenced by the presence of outliers and controlling variables. To a very large extent, this could have consequential effects on the parameters and the model fitness. Though previous researches have studied outliers and controlling observations from various perspectives including the use of box plots, normal probability plots, among others, the use of uniform horizontal QQ plot is yet to be explored. This study is, therefore, aimed at applying uniform QQ plots to identifying outliers and possible controlling observations in SEM. The results showed that all the three methods of estimators manifest the ability to identify outliers and possible controlling observations in SEM. It was noted that the Anderson-Rubin estimator of QQ plot showed a more efficient or visual display of spotting outliers and possible controlling observations as compared to the other methods of estimators. Therefore, this paper provides an efficient way identifying outliers as it fragments the data set.展开更多
Up to now,outlier detection and reliability theory are generallybased on the regular Gauss-Markov models,in which the covariance matrix of ob-servations is positively definite.For the adjustment models with singular c...Up to now,outlier detection and reliability theory are generallybased on the regular Gauss-Markov models,in which the covariance matrix of ob-servations is positively definite.For the adjustment models with singular covari-ance matrix,the statistics for outlier detection are derived by the authors.Thecorresponding reliability theory is developed.And the application of the theory isdemonstrated with a practical example.展开更多
This study firstly improved the Generalized Autoregressive Conditional Heteroskedast model for the issue that financial product sales data have singular information when applying this model, and the improved outlier d...This study firstly improved the Generalized Autoregressive Conditional Heteroskedast model for the issue that financial product sales data have singular information when applying this model, and the improved outlier detection method was used to detect the location of outliers, which were processed by the iterative method. Secondly, in order to describe the peak and fat tail of the financial time series, as well as the leverage effect, this work used the skewed-t Asymmetric Power Autoregressive Conditional Heteroskedasticity model based on the Autoregressive Integrated Moving Average Model to analyze the sales data. Empirical analysis showed that the model considering the skewed distribution is effective.展开更多
Varying-coefficient single-index model( VCSIM) avoids the so-called "curse of dimensionality " and is flexible enough to include several important statistical models. This paper considers statistical diagnos...Varying-coefficient single-index model( VCSIM) avoids the so-called "curse of dimensionality " and is flexible enough to include several important statistical models. This paper considers statistical diagnosis for VCSIM. First,the parametric estimation equation is established based on empirical likelihood. Then,some diagnosis statistics are defined. At last, an example is given to illustrate all the results.展开更多
In recent years, as the enrollment rate of Chinese colleges has increased year by year, the identification of needy undergraduates has become increasingly important. However, the traditional way to identify college st...In recent years, as the enrollment rate of Chinese colleges has increased year by year, the identification of needy undergraduates has become increasingly important. However, the traditional way to identify college students with financial difficulties mainly relies on manual review and collective voting, which easily causes subjectivity and randomness. To alleviate the problem above, this paper establishes an automatic identification model for needy undergraduates based on the 1842 questionnaires collected from undergraduates in WHUT. Firstly, this paper filters the questionnaire preliminary using the local outlier factor algorithm. Secondly, this paper combines mutual information, Spearman rank correlation coefficient and distance correlation coefficient by rank-sum ratio to select features for eliminating noise from irrelevant features. Thirdly, this paper trains filed-aware factor machine model and compares it with other models, such as Logistic Regression, SVM, etc. Eventually, this paper finds that filed-aware factor machine performers much better than other models in the identification of needy undergraduates, and prominent features affecting the identification of needy undergraduates are the year of the family income, cost of living provided parents, etc.展开更多
The capital asset pricing model (CAPM) is a commonly used regression model in finance to model stock returns. Bayesian methods have been developed for the CAPM to account for market fluctuations within the industry. H...The capital asset pricing model (CAPM) is a commonly used regression model in finance to model stock returns. Bayesian methods have been developed for the CAPM to account for market fluctuations within the industry. However, a Bayesian model checking procedure is needed to assess the CAPM in terms of the usual regression model assumptions of independence, homogeneity of variance, and normality. This paper develops Bayesian residuals and Bayesian p-values to check these model assumptions as well as to suggest model extensions to the CAPM.展开更多
In this paper, a varying-coefficient density-ratio model for case-control studies is developed. We investigate the local empirical likelihood diagnosis of varying coefficient density-ratio model for case-control data....In this paper, a varying-coefficient density-ratio model for case-control studies is developed. We investigate the local empirical likelihood diagnosis of varying coefficient density-ratio model for case-control data. The local empirical log-likelihood ratios for the nonparametric coefficient functions are introduced. First, the estimation equations based on empirical likelihood method are established. Then, a few of diagnostic statistics are proposed. At last, we also examine the performance of proposed method for finite sample sizes through simulation studies.展开更多
In this paper, we investigate the empirical likelihood diagnosis of modal linear regression models. The empirical likelihood ratio function based on modal regression estimation method for the regression coefficient is...In this paper, we investigate the empirical likelihood diagnosis of modal linear regression models. The empirical likelihood ratio function based on modal regression estimation method for the regression coefficient is introduced. First, the estimation equation based on empirical likelihood method is established. Then, some diagnostic statistics are proposed. At last, we also examine the performance of proposed method for finite sample sizes through simulation study.展开更多
Estimation of bounded populations and carrying capacity in the presence of a sample frame is considered. Models based on Logistic model are proposed. Like the existing estimators, this estimation technique deals with ...Estimation of bounded populations and carrying capacity in the presence of a sample frame is considered. Models based on Logistic model are proposed. Like the existing estimators, this estimation technique deals with initial condition and is based on yearly population totals in order to fit in a model within a given period of time in this study. The proposed Logistic model technique has shown to be efficient especially with large data. The empirical study indicated that the Logistic model is efficient and can estimate properly even in the presence of outliers.展开更多
The use of historical data is important in making the predictions, for instance in the exchange rate. However, in the construction of a model, extreme data or dirtiness of data is inevitable. In this study, AR model i...The use of historical data is important in making the predictions, for instance in the exchange rate. However, in the construction of a model, extreme data or dirtiness of data is inevitable. In this study, AR model is used with the exchange rate historical data (January 2007 until December 2007) for USD/MYR and is divided into 1-, 3- and 6-horizontal months respectively. Since the presence of extreme data will affect the accuracy of the results obtained in a prediction. Therefore, to obtain a more accurate prediction results, the bootstrap approach was implemented by hybrid with AR model coins as the Bootstrap Autoregressive model (BAR). The effectiveness of the proposed model is investigated by comparing the existing and the proposed model through the statistical performance methods which are RMSE, MAE and MAD. The comparison involves 1%, 5% and 10% for each horizontal month. The results showed that the BAR model performed better than the AR model in terms of sensitivity to extreme data, the accuracy of forecasting models, efficiency and predictability of the model prediction. In conclusion, bootstrap method can alleviate the sensitivity of the model to the extreme data, thereby improving the accuracy of forecasting model which also have high prediction efficiency and that can increase the predictability of the model.展开更多
文摘In order to solve the model update problem in mean-shift based tracker, a novel mechanism is proposed. Kalman filter is employed to update object model by filtering object kernel-histogram using previous model and current candidate. A self-tuning method is used for adaptively adjust all the parameters of the filters under the analysis of the filtering residuals. In addition, hypothesis testing servers as the criterion for determining whether to accept filtering result. Therefore, the tracker has the ability to handle occlusion so as to avoid over-update. The experimental results show that our method can not only keep up with the object appearance and scale changes but also be robust to occlusion.
文摘Wavelet transform was introduced to detect and eliminate outliers in time-frequency domain. The outlier rejection and multirate information extraction were initially incorporated by wavelet transform, a new outlier rejecting multirate model for state estimation was proposed. The model is applied to state estimation with interacting multiple model, as the outlier is eliminated and more reasonable multirate information is extracted, the estimation accuracy is greatly enhanced. The simulation results prove that the new model is robust to outliers and the estimation performance is significantly improved.
文摘On the basis of the newly developed regression diagnostic analysis, the diagnostic method with the assessment of the outliers of the logistic regression model was set up and it was used to analyze the prognosis of the patients with acute lymphatic leukemia.
文摘In this papert we give an approach for detecting one or more outliers inrandomized linear model.The likelihood ratio test statistic and its distributions underthe null hypothesis and the alternative hypothesis are given. Furthermore,the robustnessof the test statistic in a certain sense is proved. Finally,the optimality properties of thetest are derived.
文摘We introduce a new wavelet based procedure for detecting outliers in financial discrete time series.The procedure focuses on the analysis of residuals obtained from a model fit,and applied to the Generalized Autoregressive Conditional Heteroskedasticity(GARCH)like model,but not limited to these models.We apply the Maximal-Overlap Discrete Wavelet Transform(MODWT)to the residuals and compare their wavelet coefficients against quantile thresholds to detect outliers.Our methodology has several advantages over existing methods that make use of the standard Discrete Wavelet Transform(DWT).The series sample size does not need to be a power of 2 and the transform can explore any wavelet filter and be run up to the desired level.Simulated wavelet quantiles from a Normal and Student t-distribution are used as threshold for the maximum of the absolute value of wavelet coefficients.The performance of the procedure is illustrated and applied to two real series:the closed price of the Saudi Stock market and the S&P 500 index respectively.The efficiency of the proposed method is demonstrated and can be considered as a distinct important addition to the existing methods.
文摘The study explored both Box and Jenkins, and iterative outlier detection procedures in determining the efficiency of ARIMA-GARCH-type models in the presence of outliers using the daily closing share price returns series of four prominent banks in Nigeria (Skye (Polaris) bank, Sterling bank, Unity bank and Zenith bank) from January 3, 2006 to November 24, 2016. The series consists of 2690 observations for each bank. The data were obtained from the Nigerian Stock Exchange. Unconditional variance and kurtosis coefficient were used as criteria for measuring the efficiency of ARIMA-GARCH-type models and our findings revealed that kurtosis is a better criterion (as it is a true measure of outliers) than the unconditional variance (as it can be depleted or amplified by outliers). Specifically, the strength of this study is in showing the applicability and relevance of iterative methods in time series modeling.
基金The National Natural Science Foundation ofChina (No60304007)The China Aviation Science Foundation (No 03F57003 )The QMX Project of Shanghai Science and Technology Development Foundation ( No04QMX1410)
文摘An adaptive outlier controlling multirate model based on Hong’s multirate kinetic model was represented in order to resist the outliers and utilize their useful information. Wavelet transform was introduced to detect and control the outliers. The multirate information extraction and the controlling of outliers were properly integrated to establish an adaptive outlier controlling multirate model. The proposed model was applied to multisensor state fusion with interacting multiple model (IMM), and a robust interacting multisensor state fusion algorithm was established based on adaptive outlier controlling multirate model. The Monte-Carlo simulation shows that it could improve the accuracy of fusion estimation by 70% compared to Hong’s algorithm and at least 14% to Xiao’s algorithm.
文摘The structural equation model (SEM) concept is generally influenced by the presence of outliers and controlling variables. To a very large extent, this could have consequential effects on the parameters and the model fitness. Though previous researches have studied outliers and controlling observations from various perspectives including the use of box plots, normal probability plots, among others, the use of uniform horizontal QQ plot is yet to be explored. This study is, therefore, aimed at applying uniform QQ plots to identifying outliers and possible controlling observations in SEM. The results showed that all the three methods of estimators manifest the ability to identify outliers and possible controlling observations in SEM. It was noted that the Anderson-Rubin estimator of QQ plot showed a more efficient or visual display of spotting outliers and possible controlling observations as compared to the other methods of estimators. Therefore, this paper provides an efficient way identifying outliers as it fragments the data set.
文摘Up to now,outlier detection and reliability theory are generallybased on the regular Gauss-Markov models,in which the covariance matrix of ob-servations is positively definite.For the adjustment models with singular covari-ance matrix,the statistics for outlier detection are derived by the authors.Thecorresponding reliability theory is developed.And the application of the theory isdemonstrated with a practical example.
基金supported by the National Natural Science Foundation of China(Grant No.11201003)the Provincial Natural Science Research Project of Anhui Colleges(Grant No.KJ2016A263)+1 种基金the Natural Science Foundation of Anhui Province(Grant No.1408085MA07)the PhD Research Startup Foundation of Anhui Normal University(Grant No.2014bsqdjj34)
文摘This study firstly improved the Generalized Autoregressive Conditional Heteroskedast model for the issue that financial product sales data have singular information when applying this model, and the improved outlier detection method was used to detect the location of outliers, which were processed by the iterative method. Secondly, in order to describe the peak and fat tail of the financial time series, as well as the leverage effect, this work used the skewed-t Asymmetric Power Autoregressive Conditional Heteroskedasticity model based on the Autoregressive Integrated Moving Average Model to analyze the sales data. Empirical analysis showed that the model considering the skewed distribution is effective.
文摘Varying-coefficient single-index model( VCSIM) avoids the so-called "curse of dimensionality " and is flexible enough to include several important statistical models. This paper considers statistical diagnosis for VCSIM. First,the parametric estimation equation is established based on empirical likelihood. Then,some diagnosis statistics are defined. At last, an example is given to illustrate all the results.
文摘In recent years, as the enrollment rate of Chinese colleges has increased year by year, the identification of needy undergraduates has become increasingly important. However, the traditional way to identify college students with financial difficulties mainly relies on manual review and collective voting, which easily causes subjectivity and randomness. To alleviate the problem above, this paper establishes an automatic identification model for needy undergraduates based on the 1842 questionnaires collected from undergraduates in WHUT. Firstly, this paper filters the questionnaire preliminary using the local outlier factor algorithm. Secondly, this paper combines mutual information, Spearman rank correlation coefficient and distance correlation coefficient by rank-sum ratio to select features for eliminating noise from irrelevant features. Thirdly, this paper trains filed-aware factor machine model and compares it with other models, such as Logistic Regression, SVM, etc. Eventually, this paper finds that filed-aware factor machine performers much better than other models in the identification of needy undergraduates, and prominent features affecting the identification of needy undergraduates are the year of the family income, cost of living provided parents, etc.
文摘The capital asset pricing model (CAPM) is a commonly used regression model in finance to model stock returns. Bayesian methods have been developed for the CAPM to account for market fluctuations within the industry. However, a Bayesian model checking procedure is needed to assess the CAPM in terms of the usual regression model assumptions of independence, homogeneity of variance, and normality. This paper develops Bayesian residuals and Bayesian p-values to check these model assumptions as well as to suggest model extensions to the CAPM.
文摘In this paper, a varying-coefficient density-ratio model for case-control studies is developed. We investigate the local empirical likelihood diagnosis of varying coefficient density-ratio model for case-control data. The local empirical log-likelihood ratios for the nonparametric coefficient functions are introduced. First, the estimation equations based on empirical likelihood method are established. Then, a few of diagnostic statistics are proposed. At last, we also examine the performance of proposed method for finite sample sizes through simulation studies.
文摘In this paper, we investigate the empirical likelihood diagnosis of modal linear regression models. The empirical likelihood ratio function based on modal regression estimation method for the regression coefficient is introduced. First, the estimation equation based on empirical likelihood method is established. Then, some diagnostic statistics are proposed. At last, we also examine the performance of proposed method for finite sample sizes through simulation study.
文摘Estimation of bounded populations and carrying capacity in the presence of a sample frame is considered. Models based on Logistic model are proposed. Like the existing estimators, this estimation technique deals with initial condition and is based on yearly population totals in order to fit in a model within a given period of time in this study. The proposed Logistic model technique has shown to be efficient especially with large data. The empirical study indicated that the Logistic model is efficient and can estimate properly even in the presence of outliers.
文摘The use of historical data is important in making the predictions, for instance in the exchange rate. However, in the construction of a model, extreme data or dirtiness of data is inevitable. In this study, AR model is used with the exchange rate historical data (January 2007 until December 2007) for USD/MYR and is divided into 1-, 3- and 6-horizontal months respectively. Since the presence of extreme data will affect the accuracy of the results obtained in a prediction. Therefore, to obtain a more accurate prediction results, the bootstrap approach was implemented by hybrid with AR model coins as the Bootstrap Autoregressive model (BAR). The effectiveness of the proposed model is investigated by comparing the existing and the proposed model through the statistical performance methods which are RMSE, MAE and MAD. The comparison involves 1%, 5% and 10% for each horizontal month. The results showed that the BAR model performed better than the AR model in terms of sensitivity to extreme data, the accuracy of forecasting models, efficiency and predictability of the model prediction. In conclusion, bootstrap method can alleviate the sensitivity of the model to the extreme data, thereby improving the accuracy of forecasting model which also have high prediction efficiency and that can increase the predictability of the model.