基于遗传算法的复杂网络社区探测是当前的研究热点.针对该问题,本文在分析网络模块性函数Q的局部单调性的基础上,给出一种快速、有效的局部搜索变异策略,同时为兼顾初始种群的精度和多样性以达到进一步提高搜索效率的目的,采用了标签传...基于遗传算法的复杂网络社区探测是当前的研究热点.针对该问题,本文在分析网络模块性函数Q的局部单调性的基础上,给出一种快速、有效的局部搜索变异策略,同时为兼顾初始种群的精度和多样性以达到进一步提高搜索效率的目的,采用了标签传播作为初始种群的产生方法;综上,提出了一个结合局部搜索的遗传算法(Genetic algorithm with local search,LGA).在基准网络及大规模复杂网络上对LGA进行测试,并与当前具有代表性的社区探测算法进行比较,实验结果表明了文中算法的有效性与高效性.展开更多
针对矿难发生后井下环境的不确定性,提出一种以矿难前的GIS(Geographic information system)地图为基础建立环境栅格模型并结合改进遗传算法的矿难搜索机器人全局路径规划方法。效仿蚁群算法中的信息素提出基于位置信息负反馈的方法,并...针对矿难发生后井下环境的不确定性,提出一种以矿难前的GIS(Geographic information system)地图为基础建立环境栅格模型并结合改进遗传算法的矿难搜索机器人全局路径规划方法。效仿蚁群算法中的信息素提出基于位置信息负反馈的方法,并结合优先权分组的思想,提出一种新的有效的种群初始化方法,同时将该种群初始化方法应用到变异算子中,且依据最优解的变化情况自适应地调整交叉和变异的概率。与此同时,针对环境信息的不同变化情况,结合全局路径规划结果对机器人进行局部避障方法的研究。最后,通过仿真实验证明本方法能够快速有效地在已知环境中得到机器人的最优路径,并且能够在局部变化的环境中实现实时避障。展开更多
文摘基于遗传算法的复杂网络社区探测是当前的研究热点.针对该问题,本文在分析网络模块性函数Q的局部单调性的基础上,给出一种快速、有效的局部搜索变异策略,同时为兼顾初始种群的精度和多样性以达到进一步提高搜索效率的目的,采用了标签传播作为初始种群的产生方法;综上,提出了一个结合局部搜索的遗传算法(Genetic algorithm with local search,LGA).在基准网络及大规模复杂网络上对LGA进行测试,并与当前具有代表性的社区探测算法进行比较,实验结果表明了文中算法的有效性与高效性.
文摘针对矿难发生后井下环境的不确定性,提出一种以矿难前的GIS(Geographic information system)地图为基础建立环境栅格模型并结合改进遗传算法的矿难搜索机器人全局路径规划方法。效仿蚁群算法中的信息素提出基于位置信息负反馈的方法,并结合优先权分组的思想,提出一种新的有效的种群初始化方法,同时将该种群初始化方法应用到变异算子中,且依据最优解的变化情况自适应地调整交叉和变异的概率。与此同时,针对环境信息的不同变化情况,结合全局路径规划结果对机器人进行局部避障方法的研究。最后,通过仿真实验证明本方法能够快速有效地在已知环境中得到机器人的最优路径,并且能够在局部变化的环境中实现实时避障。