The Noether symmetry and the conserved quantity of a fractional Birkhoffian system are studied within the Riemann–Liouville fractional derivatives. Firstly, the fractional Birkhoff's equations and the corresponding ...The Noether symmetry and the conserved quantity of a fractional Birkhoffian system are studied within the Riemann–Liouville fractional derivatives. Firstly, the fractional Birkhoff's equations and the corresponding transversality conditions are given. Secondly, from special to general forms, Noether's theorems of a standard Birhoffian system are given, which provide an approach and theoretical basis for the further research on the Noether symmetry of the fractional Birkhoffian system. Thirdly, the invariances of the fractional Pfaffian action under a special one-parameter group of infinitesimal transformations without transforming the time and a general one-parameter group of infinitesimal transformations with transforming the time are studied, respectively, and the corresponding Noether's theorems are established. Finally, an example is given to illustrate the application of the results.展开更多
The fractional Pfaffian variational problem and Noether’s theorems were investigated in terms of Riemann-Liouville derivatives on the basis of El-Nabulsi fractional model.The problem of the calculus of variations wit...The fractional Pfaffian variational problem and Noether’s theorems were investigated in terms of Riemann-Liouville derivatives on the basis of El-Nabulsi fractional model.The problem of the calculus of variations with fractional derivatives is a hot topic recently.Firstly,within Riemann-Liouville derivatives,the ElNabulsi Pfaffian variational problem was presented,the fractional Pfaff-Birkhoff-d’Alembert principle was established,and the fractional Birkhoff equations and the corresponding transversality conditions were obtained.Then,the Noether’s theorems in terms of Riemann-Liouville derivatives for the Birkhoffian system on the basis of El-Nabulsi fractional model are investigated under the special and the general transformations respectively.Finally,an example is given to illustrate the methods and results appeared in this paper.展开更多
This paper shows that the centered fractional derivatives introduced by Manuel Duarte Ortigueira in 2006 are useful in the description of optical solitons. It is shown that we can construct a fractional extension of t...This paper shows that the centered fractional derivatives introduced by Manuel Duarte Ortigueira in 2006 are useful in the description of optical solitons. It is shown that we can construct a fractional extension of the nonlinear Schrödinger (NLS) equation which incorporates Ortigueira’s derivatives and has soliton solutions. It is also shown that this fractional NLS equation has a Lagrangian density and can be derived from a variational principle. Finally, a fractional extension of Noether’s theorem is formulated to determine the conserved quantities associated to the invariances of the action integral under infinitesimal transformations.展开更多
The object of the present paper is to prove distortion theorems for the n-th order derivative of starlike and convex functions of order a. In addition. a related conjecture involving the fractional derivative of the ...The object of the present paper is to prove distortion theorems for the n-th order derivative of starlike and convex functions of order a. In addition. a related conjecture involving the fractional derivative of the convex function f(z) by Owa S and Srivastava H M is investigated.展开更多
Invariant conditions for conformable fractional problems of the calculus of variations under the presence of external forces in the dynamics are studied. Depending on the type of transformations considered, different ...Invariant conditions for conformable fractional problems of the calculus of variations under the presence of external forces in the dynamics are studied. Depending on the type of transformations considered, different necessary conditions of invariance are obtained. As particular cases, we prove fractional versions of Noether's symmetry theorem. Invariant conditions for fractional optimal control problems, using the Hamiltonian formalism, are also investigated. As an example of potential application in Physics, we show that with conformable derivatives it is possible to formulate an Action Principle for particles under frictional forces that is far simpler than the one obtained with classical fractional derivatives.展开更多
In this paper,we first establish the sharp growth theorem and the distortion theorem of the Frechet derivative for biholomorphic mappings defined on the unit ball of complex Banach spaces and the unit polydisk in C^(n...In this paper,we first establish the sharp growth theorem and the distortion theorem of the Frechet derivative for biholomorphic mappings defined on the unit ball of complex Banach spaces and the unit polydisk in C^(n) with some restricted conditions.We next give the distortion theorem of the Jacobi determinant for biholomorphic mappings defined on the unit ball of C^(n) with an arbitrary norm and the unit polydisk in C^(n) under certain restricted assumptions.Finally we obtain the sharp Goluzin type distortion theorem for biholomorphic mappings defined on the unit ball of complex Banach spaces and the unit polydisk in C^(n) with some additional conditions.The results derived all reduce to the corresponding classical results in one complex variable,and include some known results from the prior literature.展开更多
By using the Cauchy integral formula of bianalytic functions, the formula of higher derivatives of bianalytic functions and Weierstrass Theorem are obtained.
By applying the standard fixed point theorems,we prove the existence and uniqueness results for a system of coupled differential equations involving both left Caputo and right Riemann-Liouville fractional derivatives ...By applying the standard fixed point theorems,we prove the existence and uniqueness results for a system of coupled differential equations involving both left Caputo and right Riemann-Liouville fractional derivatives and mixed fractional integrals,supplemented with nonlocal coupled fractional integral boundary conditions.An example is also constructed for the illustration of the obtained results.展开更多
This paper has used the Arbitrage Theorem (Gordan Theorem) to show that first, all securities are derivatives for each other, and they are priced by the same risk neutral probability measure. Second, after the firm ch...This paper has used the Arbitrage Theorem (Gordan Theorem) to show that first, all securities are derivatives for each other, and they are priced by the same risk neutral probability measure. Second, after the firm changes its debt-equity ratio, the equityholders can always combine the new equity with other existing securities to create a home-made equity which will give exactly the same time-1 payoff of the old equity. That is, we have a capital structure irrelevancy proposition: changes in firms’ debt-equity ratios will not affect equityholders’ wealth (welfare), and equityholders’ preferences toward variance are irrelevant. Third, when the firm moves from a more certain project to a more uncertain one, the time-0 price of equity will increase, but (because the time-1 payoff of common bond has an upper bound) the time-0 price of common bond will decrease. Fourth, different labor contractual arrangements will not affect the time-0 price of labor input. When the firm moves from a more certain project to a more uncertain one, the time-0 price of labor input will increase if it is under the share or the mixed contract.展开更多
Noether theorem is applied to a variable order fractional multiscale mechano-electrophysiological model of neuron membrane dynamics.The variable orders fractional Lagrange equation of a multiscale mechano-electrophysi...Noether theorem is applied to a variable order fractional multiscale mechano-electrophysiological model of neuron membrane dynamics.The variable orders fractional Lagrange equation of a multiscale mechano-electrophysiological model of neuron membrane dynamics is given.The variable orders fractional Noether symmetry criterion and Noether conserved quantities are given.The forms of variable orders fractional Noether conserved quantities corresponding to Noether symmetry generators solutions of the model under different conditions are discussed in detail,and it is found that the expressions of variable orders fractional Noether conserved quantities are closely dependent on the external nonconservative forces and material parameters of the neuron.展开更多
In this paper, an adaptive proportional-derivative sliding mode control(APD-SMC) law, is proposed for 2D underactuated overhead crane systems. The proposed controller has the advantages of simple structure, easy to im...In this paper, an adaptive proportional-derivative sliding mode control(APD-SMC) law, is proposed for 2D underactuated overhead crane systems. The proposed controller has the advantages of simple structure, easy to implement of PD control, strong robustness of SMC with respect to external disturbances and uncertain system parameters, and adaptation for unknown system dynamics associated with the feedforward parts. In the proposed APD-SMC law, the PD control part is used to stabilize the controlled system, the SMC part is used to compensate the external disturbances and system uncertainties,and the adaptive control part is utilized to estimate the unknown system parameters. The coupling behavior between the trolley movement and the payload swing is enhanced and, therefore, the transient performance of the proposed controller is improved.The Lyapunov techniques and the La Salle's invariance theorem are employed in to support the theoretical derivations. Experimental results are provided to validate the superior performance of the proposed control law.展开更多
For real valued functions defined on Cantor triadic set, a derivative with corresponding formula of Newton Leibniz’s type is given. In particular, for the self similar functions and alternately jumping f...For real valued functions defined on Cantor triadic set, a derivative with corresponding formula of Newton Leibniz’s type is given. In particular, for the self similar functions and alternately jumping functions defined in this paper, their derivative and exceptional sets are studied accurately by using ergodic theory on Σ 2 and Duffin Schaeffer’s theorem concerning metric diophantine approximation. In addition, Haar basis of L 2(Σ 2) is constructed and Haar expansion of standard self similar function is given.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10972151 and 11272227the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(Grant No.CXZZ11 0949)
文摘The Noether symmetry and the conserved quantity of a fractional Birkhoffian system are studied within the Riemann–Liouville fractional derivatives. Firstly, the fractional Birkhoff's equations and the corresponding transversality conditions are given. Secondly, from special to general forms, Noether's theorems of a standard Birhoffian system are given, which provide an approach and theoretical basis for the further research on the Noether symmetry of the fractional Birkhoffian system. Thirdly, the invariances of the fractional Pfaffian action under a special one-parameter group of infinitesimal transformations without transforming the time and a general one-parameter group of infinitesimal transformations with transforming the time are studied, respectively, and the corresponding Noether's theorems are established. Finally, an example is given to illustrate the application of the results.
基金National Natural Science Foundations of China(Nos.11572212,11272227,10972151)the Innovation Program for Scientific Research of Nanjing University of Science and Technology,Chinathe Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(No.KYLX15_0405)
文摘The fractional Pfaffian variational problem and Noether’s theorems were investigated in terms of Riemann-Liouville derivatives on the basis of El-Nabulsi fractional model.The problem of the calculus of variations with fractional derivatives is a hot topic recently.Firstly,within Riemann-Liouville derivatives,the ElNabulsi Pfaffian variational problem was presented,the fractional Pfaff-Birkhoff-d’Alembert principle was established,and the fractional Birkhoff equations and the corresponding transversality conditions were obtained.Then,the Noether’s theorems in terms of Riemann-Liouville derivatives for the Birkhoffian system on the basis of El-Nabulsi fractional model are investigated under the special and the general transformations respectively.Finally,an example is given to illustrate the methods and results appeared in this paper.
文摘This paper shows that the centered fractional derivatives introduced by Manuel Duarte Ortigueira in 2006 are useful in the description of optical solitons. It is shown that we can construct a fractional extension of the nonlinear Schrödinger (NLS) equation which incorporates Ortigueira’s derivatives and has soliton solutions. It is also shown that this fractional NLS equation has a Lagrangian density and can be derived from a variational principle. Finally, a fractional extension of Noether’s theorem is formulated to determine the conserved quantities associated to the invariances of the action integral under infinitesimal transformations.
文摘The object of the present paper is to prove distortion theorems for the n-th order derivative of starlike and convex functions of order a. In addition. a related conjecture involving the fractional derivative of the convex function f(z) by Owa S and Srivastava H M is investigated.
基金supported by CNPq and CAPES(Brazilian research funding agencies)Portuguese funds through the Center for Research and Development in Mathematics and Applications(CIDMA)the Portuguese Foundation for Science and Technology(FCT),within project UID/MAT/04106/2013
文摘Invariant conditions for conformable fractional problems of the calculus of variations under the presence of external forces in the dynamics are studied. Depending on the type of transformations considered, different necessary conditions of invariance are obtained. As particular cases, we prove fractional versions of Noether's symmetry theorem. Invariant conditions for fractional optimal control problems, using the Hamiltonian formalism, are also investigated. As an example of potential application in Physics, we show that with conformable derivatives it is possible to formulate an Action Principle for particles under frictional forces that is far simpler than the one obtained with classical fractional derivatives.
基金Supported by National Natural Science Foundation of China(11871257,12071130)。
文摘In this paper,we first establish the sharp growth theorem and the distortion theorem of the Frechet derivative for biholomorphic mappings defined on the unit ball of complex Banach spaces and the unit polydisk in C^(n) with some restricted conditions.We next give the distortion theorem of the Jacobi determinant for biholomorphic mappings defined on the unit ball of C^(n) with an arbitrary norm and the unit polydisk in C^(n) under certain restricted assumptions.Finally we obtain the sharp Goluzin type distortion theorem for biholomorphic mappings defined on the unit ball of complex Banach spaces and the unit polydisk in C^(n) with some additional conditions.The results derived all reduce to the corresponding classical results in one complex variable,and include some known results from the prior literature.
文摘By using the Cauchy integral formula of bianalytic functions, the formula of higher derivatives of bianalytic functions and Weierstrass Theorem are obtained.
基金This project was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Saudi Arabia(KEP-MSc-63-130-42).
文摘By applying the standard fixed point theorems,we prove the existence and uniqueness results for a system of coupled differential equations involving both left Caputo and right Riemann-Liouville fractional derivatives and mixed fractional integrals,supplemented with nonlocal coupled fractional integral boundary conditions.An example is also constructed for the illustration of the obtained results.
文摘This paper has used the Arbitrage Theorem (Gordan Theorem) to show that first, all securities are derivatives for each other, and they are priced by the same risk neutral probability measure. Second, after the firm changes its debt-equity ratio, the equityholders can always combine the new equity with other existing securities to create a home-made equity which will give exactly the same time-1 payoff of the old equity. That is, we have a capital structure irrelevancy proposition: changes in firms’ debt-equity ratios will not affect equityholders’ wealth (welfare), and equityholders’ preferences toward variance are irrelevant. Third, when the firm moves from a more certain project to a more uncertain one, the time-0 price of equity will increase, but (because the time-1 payoff of common bond has an upper bound) the time-0 price of common bond will decrease. Fourth, different labor contractual arrangements will not affect the time-0 price of labor input. When the firm moves from a more certain project to a more uncertain one, the time-0 price of labor input will increase if it is under the share or the mixed contract.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12272148 and 11772141).
文摘Noether theorem is applied to a variable order fractional multiscale mechano-electrophysiological model of neuron membrane dynamics.The variable orders fractional Lagrange equation of a multiscale mechano-electrophysiological model of neuron membrane dynamics is given.The variable orders fractional Noether symmetry criterion and Noether conserved quantities are given.The forms of variable orders fractional Noether conserved quantities corresponding to Noether symmetry generators solutions of the model under different conditions are discussed in detail,and it is found that the expressions of variable orders fractional Noether conserved quantities are closely dependent on the external nonconservative forces and material parameters of the neuron.
基金supported in part by the National High Technology Research and Development Program of China(863 Program)(2015AA042307)Shandong Provincial Scientific and Technological Development Foundation(2014GGX103038)+3 种基金Shandong Provincial Independent Innovation and Achievement Transformation Special Foundation(2015ZDXX0101E01)National Natural Science Fundation of China(NSFC)Joint Fund of Shandong Province(U1706228)the Fundamental Research Funds of Shandong University(2015JC027)
文摘In this paper, an adaptive proportional-derivative sliding mode control(APD-SMC) law, is proposed for 2D underactuated overhead crane systems. The proposed controller has the advantages of simple structure, easy to implement of PD control, strong robustness of SMC with respect to external disturbances and uncertain system parameters, and adaptation for unknown system dynamics associated with the feedforward parts. In the proposed APD-SMC law, the PD control part is used to stabilize the controlled system, the SMC part is used to compensate the external disturbances and system uncertainties,and the adaptive control part is utilized to estimate the unknown system parameters. The coupling behavior between the trolley movement and the payload swing is enhanced and, therefore, the transient performance of the proposed controller is improved.The Lyapunov techniques and the La Salle's invariance theorem are employed in to support the theoretical derivations. Experimental results are provided to validate the superior performance of the proposed control law.
文摘For real valued functions defined on Cantor triadic set, a derivative with corresponding formula of Newton Leibniz’s type is given. In particular, for the self similar functions and alternately jumping functions defined in this paper, their derivative and exceptional sets are studied accurately by using ergodic theory on Σ 2 and Duffin Schaeffer’s theorem concerning metric diophantine approximation. In addition, Haar basis of L 2(Σ 2) is constructed and Haar expansion of standard self similar function is given.