To investigate the real-time mean orbital elements(MOEs)estimation problem under the influence of state jumping caused by non-fatal spacecraft collision or protective orbit trans-fer,a modified augmented square-root u...To investigate the real-time mean orbital elements(MOEs)estimation problem under the influence of state jumping caused by non-fatal spacecraft collision or protective orbit trans-fer,a modified augmented square-root unscented Kalman filter(MASUKF)is proposed.The MASUKF is composed of sigma points calculation,time update,modified state jumping detec-tion,and measurement update.Compared with the filters used in the existing literature on MOEs estimation,it has three main characteristics.Firstly,the state vector is augmented from six to nine by the added thrust acceleration terms,which makes the fil-ter additionally give the state-jumping-thrust-acceleration esti-mation.Secondly,the normalized innovation is used for state jumping detection to set detection threshold concisely and make the filter detect various state jumping with low latency.Thirdly,when sate jumping is detected,the covariance matrix inflation will be done,and then an extra time update process will be con-ducted at this time instance before measurement update.In this way,the relatively large estimation error at the detection moment can significantly decrease.Finally,typical simulations are per-formed to illustrated the effectiveness of the method.展开更多
To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitr...To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation(BIE) representation solves the two-dimensional convected Helmholtz equation(CHE) and its fundamental solution, which must satisfy a new Sommerfeld radiation condition(SRC) in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green's kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole,dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation.展开更多
Reversed-phase paper chromatography technique is used for study on the extraction mechanism and sep- aration of rare earth elements.As the stationary phase,chromatographic paper strips are impregnated with a solution ...Reversed-phase paper chromatography technique is used for study on the extraction mechanism and sep- aration of rare earth elements.As the stationary phase,chromatographic paper strips are impregnated with a solution of monomyristyl phosphoric acid (MPA) in chloroform.Mineral acids are used as developers. The effect of concentration of acids and/or salts upon R_f has been investigated.According to the re- sults of R_f values for a given rare earth element in various acids,the order of extraction ability is HCl>HNO_3>H_2SO_4.A tetrad effect is clearly observed.for the R_f value of rare earth elements.The effects of other parameters on the R_f value,such as the quantities of extractant retained by the paper and the temperature are also examined.Based on the determination of the molar ratio of MPA to rare earth elements and the number of H^+ ions released in extraction reaction,a reasonable mechanism is proposed.The mutual separation of heavy rare earth elements will be better than that of the light rare earth group because of the larger separation coefficient of the former.A mixture of Ho-Er-Tm-Lu is successfully separated by the present method.展开更多
Sun synchronous orbit and frozen orbit formed due to J 2 perturbation have very strict constraints on orbital parameters,which have restricted the application a lot.In this paper,several control strategies were illust...Sun synchronous orbit and frozen orbit formed due to J 2 perturbation have very strict constraints on orbital parameters,which have restricted the application a lot.In this paper,several control strategies were illustrated to realize Sun synchronous frozen orbit with arbitrary orbital elements using continuous low-thrust.Firstly,according to mean element method,the averaged rate of change of the orbital elements,originating from disturbing constant accelerations over one orbital period,was derived from Gauss' variation of parameters equations.Then,we proposed that binormal acceleration could be used to realize Sun synchronous orbit,and radial or transverse acceleration could be adopted to eliminate the rotation of the argument of the perigee.Finally,amending methods on the control strategies mentioned above were presented to eliminate the residual secular growth.Simulation results showed that the control strategies illustrated in this paper could realize Sun synchronous frozen orbit with arbitrary orbital elements,and can save much more energy than the schemes presented in previous studies,and have no side effect on other orbital parameters' secular motion.展开更多
An impulse feedback control law to change the mean orbit elements of spacecraft around asteroid is presented. First, the mean orbit elements are transferred to the osculating orbit elements at the burning time. Then, ...An impulse feedback control law to change the mean orbit elements of spacecraft around asteroid is presented. First, the mean orbit elements are transferred to the osculating orbit elements at the burning time. Then, the feedback control law based on Gauss’s perturbation equations of motion is given. And the impulse control for targeting from the higher circulation orbit to the specified periapsis is developed. Finally, the numerical simulation is performed and the simulation results show that the presented impulse control law is effective.展开更多
To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four importa...To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four important process parameters, namely,punch velocity, blank holder force(BHF), friction coefficient and initial forming temperature of blank on drawing characteristics(i.e.minimum thickness and thickness deviation) was investigated with the help of design of experiments(DOE), analysis of variance(ANOVA) and analysis of mean(ANOM). Based on the results of ANOVA, it is shown that the blank holder force has the greatest influence on minimum thickness. The importance of punch velocity for thickness deviation is 44.35% followed by BHF of 24.88%,friction coefficient of 15.77% and initial forming temperature of blank of 14.995%. After determining the significance of each factor on forming characteristics, how the individual parameter affects characteristics was further analyzed by ANOM.展开更多
Since the inclination of frozen orbit with non-rotation of the perigee that occurs due to J2 perturbation must be equal to the critical inclination, this regulation has restricted the application of frozen orbit a lot...Since the inclination of frozen orbit with non-rotation of the perigee that occurs due to J2 perturbation must be equal to the critical inclination, this regulation has restricted the application of frozen orbit a lot. In this paper, we propose two control strategies to eliminate the secular growth of the argument of the perigee for orbits that are not at the critical inclination. One control strategy is using transverse continuous low-thrust, and the other is using both the transverse and the radial continuous low-thrusts. Fuel optimization in the second control strategy is addressed to make sure that the fuel consumption is the minimum. Both strategies have no effect on other orbital parameters’ secular motion. It is proved that the strategy with transverse control could save more energy than the one with radial control. Simulations show that the second control strategy could save 54.6% and 86% of energy, respectively, compared with the two methods presented in the references.展开更多
基金This work was supported by National Natural Science Foundation of China(12372045)Shanghai Aerospace Science and Technology Program(SAST2021-030).
文摘To investigate the real-time mean orbital elements(MOEs)estimation problem under the influence of state jumping caused by non-fatal spacecraft collision or protective orbit trans-fer,a modified augmented square-root unscented Kalman filter(MASUKF)is proposed.The MASUKF is composed of sigma points calculation,time update,modified state jumping detec-tion,and measurement update.Compared with the filters used in the existing literature on MOEs estimation,it has three main characteristics.Firstly,the state vector is augmented from six to nine by the added thrust acceleration terms,which makes the fil-ter additionally give the state-jumping-thrust-acceleration esti-mation.Secondly,the normalized innovation is used for state jumping detection to set detection threshold concisely and make the filter detect various state jumping with low latency.Thirdly,when sate jumping is detected,the covariance matrix inflation will be done,and then an extra time update process will be con-ducted at this time instance before measurement update.In this way,the relatively large estimation error at the detection moment can significantly decrease.Finally,typical simulations are per-formed to illustrated the effectiveness of the method.
基金supported by National Engineering School of Tunis (No.13039.1)
文摘To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation(BIE) representation solves the two-dimensional convected Helmholtz equation(CHE) and its fundamental solution, which must satisfy a new Sommerfeld radiation condition(SRC) in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green's kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole,dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation.
文摘Reversed-phase paper chromatography technique is used for study on the extraction mechanism and sep- aration of rare earth elements.As the stationary phase,chromatographic paper strips are impregnated with a solution of monomyristyl phosphoric acid (MPA) in chloroform.Mineral acids are used as developers. The effect of concentration of acids and/or salts upon R_f has been investigated.According to the re- sults of R_f values for a given rare earth element in various acids,the order of extraction ability is HCl>HNO_3>H_2SO_4.A tetrad effect is clearly observed.for the R_f value of rare earth elements.The effects of other parameters on the R_f value,such as the quantities of extractant retained by the paper and the temperature are also examined.Based on the determination of the molar ratio of MPA to rare earth elements and the number of H^+ ions released in extraction reaction,a reasonable mechanism is proposed.The mutual separation of heavy rare earth elements will be better than that of the light rare earth group because of the larger separation coefficient of the former.A mixture of Ho-Er-Tm-Lu is successfully separated by the present method.
基金supported by the National Natural Science Foundation of China (10702078)the Research Foundation of National University of Defense Technology (JC08-01-05)
文摘Sun synchronous orbit and frozen orbit formed due to J 2 perturbation have very strict constraints on orbital parameters,which have restricted the application a lot.In this paper,several control strategies were illustrated to realize Sun synchronous frozen orbit with arbitrary orbital elements using continuous low-thrust.Firstly,according to mean element method,the averaged rate of change of the orbital elements,originating from disturbing constant accelerations over one orbital period,was derived from Gauss' variation of parameters equations.Then,we proposed that binormal acceleration could be used to realize Sun synchronous orbit,and radial or transverse acceleration could be adopted to eliminate the rotation of the argument of the perigee.Finally,amending methods on the control strategies mentioned above were presented to eliminate the residual secular growth.Simulation results showed that the control strategies illustrated in this paper could realize Sun synchronous frozen orbit with arbitrary orbital elements,and can save much more energy than the schemes presented in previous studies,and have no side effect on other orbital parameters' secular motion.
文摘An impulse feedback control law to change the mean orbit elements of spacecraft around asteroid is presented. First, the mean orbit elements are transferred to the osculating orbit elements at the burning time. Then, the feedback control law based on Gauss’s perturbation equations of motion is given. And the impulse control for targeting from the higher circulation orbit to the specified periapsis is developed. Finally, the numerical simulation is performed and the simulation results show that the presented impulse control law is effective.
基金Project(2009ZX04014-074)supported by the National High Technology Research and Development Program of ChinaProject(20120006110017)supported by Doctoral Fund Program of Ministry of Education of ChinaProject(P2014-15)supported by State Key Laboratory of Materials Processing and Die & Mould Technology(Huazhong University of Science and Technology),China
文摘To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four important process parameters, namely,punch velocity, blank holder force(BHF), friction coefficient and initial forming temperature of blank on drawing characteristics(i.e.minimum thickness and thickness deviation) was investigated with the help of design of experiments(DOE), analysis of variance(ANOVA) and analysis of mean(ANOM). Based on the results of ANOVA, it is shown that the blank holder force has the greatest influence on minimum thickness. The importance of punch velocity for thickness deviation is 44.35% followed by BHF of 24.88%,friction coefficient of 15.77% and initial forming temperature of blank of 14.995%. After determining the significance of each factor on forming characteristics, how the individual parameter affects characteristics was further analyzed by ANOM.
基金supported by the National Natural Science Foundation of China (Grant No 10702078)the Research Foundation of National University of Defense Technology (Grant No JC08-01-05)
文摘Since the inclination of frozen orbit with non-rotation of the perigee that occurs due to J2 perturbation must be equal to the critical inclination, this regulation has restricted the application of frozen orbit a lot. In this paper, we propose two control strategies to eliminate the secular growth of the argument of the perigee for orbits that are not at the critical inclination. One control strategy is using transverse continuous low-thrust, and the other is using both the transverse and the radial continuous low-thrusts. Fuel optimization in the second control strategy is addressed to make sure that the fuel consumption is the minimum. Both strategies have no effect on other orbital parameters’ secular motion. It is proved that the strategy with transverse control could save more energy than the one with radial control. Simulations show that the second control strategy could save 54.6% and 86% of energy, respectively, compared with the two methods presented in the references.