In this paper,an antenna array composed of circular array and orthogonal linear array is proposed by using the design of long and short baseline“orthogonal linear array”and the circular array ambiguity resolution de...In this paper,an antenna array composed of circular array and orthogonal linear array is proposed by using the design of long and short baseline“orthogonal linear array”and the circular array ambiguity resolution design of multi-group baseline clustering.The effectiveness of the antenna array in this paper is verified by sufficient simulation and experiment.After the system deviation correction work,it is found that in the L/S/C/X frequency bands,the ambiguity resolution probability is high,and the phase difference system error between each channel is basically the same.The angle measurement error is less than 0.5°,and the positioning error is less than 2.5 km.Notably,as the center frequency increases,calibration consistency improves,and the calibration frequency points become applicable over a wider frequency range.At a center frequency of 11.5 GHz,the calibration frequency point bandwidth extends to 1200 MHz.This combined antenna array deployment holds significant promise for a wide range of applications in contemporary wireless communication systems.展开更多
The assessment of the measurement error status of online Capacitor Voltage Transformers (CVT) within the power grid is of profound significance to the equitable trade of electric energy and the secure operation of the...The assessment of the measurement error status of online Capacitor Voltage Transformers (CVT) within the power grid is of profound significance to the equitable trade of electric energy and the secure operation of the power grid. This paper advances an online CVT error state evaluation method, anchored in the in-phase relationship and outlier detection. Initially, this method leverages the in-phase relationship to obviate the influence of primary side fluctuations in the grid on assessment accuracy. Subsequently, Principal Component Analysis (PCA) is employed to meticulously disentangle the error change information inherent in the CVT from the measured values and to compute statistics that delineate the error state. Finally, the Local Outlier Factor (LOF) is deployed to discern outliers in the statistics, with thresholds serving to appraise the CVT error state. Experimental results incontrovertibly demonstrate the efficacy of this method, showcasing its prowess in effecting online tracking of CVT error changes and conducting error state assessments. The discernible enhancements in reliability, accuracy, and sensitivity are manifest, with the assessment accuracy reaching an exemplary 0.01%.展开更多
For the product degradation process with random effect (RE), measurement error (ME) and nonlinearity in step-stress accelerated degradation test (SSADT), the nonlinear Wiener based degradation model with RE and ME is ...For the product degradation process with random effect (RE), measurement error (ME) and nonlinearity in step-stress accelerated degradation test (SSADT), the nonlinear Wiener based degradation model with RE and ME is built. An analytical approximation to the probability density function (PDF) of the product's lifetime is derived in a closed form. The process and data of SSADT are analyzed to obtain the relation model of the observed data under each accelerated stress. The likelihood function for the population-based observed data is constructed. The population-based model parameters and its random coefficient prior values are estimated. According to the newly observed data of the target product in SSADT, an analytical approximation to the PDF of its residual lifetime (RL) is derived in accordance with its individual degradation characteristics. The parameter updating method based on Bayesian inference is applied to obtain the posterior value of random coefficient of the RL model. A numerical example by simulation is analyzed to verify the accuracy and advantage of the proposed model.展开更多
In order to discover the range of various errors in Chinese precipitation measurements and seek a correction method, 30 precipitation evaluation stations were set up countrywide before 1993. All the stations are refer...In order to discover the range of various errors in Chinese precipitation measurements and seek a correction method, 30 precipitation evaluation stations were set up countrywide before 1993. All the stations are reference stations in China. To seek a correction method for wind-induced error, a precipitation correction instrument called the "horizontal precipitation gauge" was devised beforehand. Field intercomparison observations regarding 29,000 precipitation events have been conducted using one pit gauge, two elevated operational gauges and one horizontal gauge at the above 30 stations. The range of precipitation measurement errors in China is obtained by analysis of intercomparison measurement results. The distribution of random errors and systematic errors in precipitation measurements are studied in this paper. A correction method, especially for wind-induced errors, is developed. The results prove that a correlation of power function exists between the precipitation amount caught by the horizontal gauge and the absolute difference of observations implemented by the operational gauge and pit gauge. The correlation coefficient is 0.99. For operational observations, precipitation correction can be carried out only by parallel observation with a horizontal precipitation gauge. The precipitation accuracy after correction approaches that of the pit gauge. The correction method developed is simple and feasible.展开更多
The digital signal-obtaining for gyroscope is given. The single optic-fiber sensor via modulating intensity of light is used as measuring eonlponent . The influence on static transmission properties resulting from the...The digital signal-obtaining for gyroscope is given. The single optic-fiber sensor via modulating intensity of light is used as measuring eonlponent . The influence on static transmission properties resulting from the special working environnlent (e. g. cryogenic and vacuum) ,the measure error because of tile reflector shape of rotor,the abnormity of facula from sensor caused by the existence of engraving error,and tile fixing error of sensor and the error of machine tool's initial lignnlent are investigated. The mathematic model in every condition is founded, the simulation and relative experiments ale done and the outeome is analyzed. The mathematic model and method of compensating technology are studied and some relative experiments are made. The result of study is usefid to improvement of the signal-obtaining system.展开更多
Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degrad...Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item's individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.展开更多
For high-dimensional models with a focus on classification performance,the?1-penalized logistic regression is becoming important and popular.However,the Lasso estimates could be problematic when penalties of different...For high-dimensional models with a focus on classification performance,the?1-penalized logistic regression is becoming important and popular.However,the Lasso estimates could be problematic when penalties of different coefficients are all the same and not related to the data.We propose two types of weighted Lasso estimates,depending upon covariates determined by the Mc Diarmid inequality.Given sample size n and a dimension of covariates p,the finite sample behavior of our proposed method with a diverging number of predictors is illustrated by non-asymptotic oracle inequalities such as the?1-estimation error and the squared prediction error of the unknown parameters.We compare the performance of our method with that of former weighted estimates on simulated data,then apply it to do real data analysis.展开更多
In this work,synchronous cutting of concave and convex surfaces was achieved using the duplex helical method for the hypoid gear,and the problem of tooth surface error correction was studied.First,the mathematical mod...In this work,synchronous cutting of concave and convex surfaces was achieved using the duplex helical method for the hypoid gear,and the problem of tooth surface error correction was studied.First,the mathematical model of the hypoid gears machined by the duplex helical method was established.Second,the coordinates of discrete points on the tooth surface were obtained by measurement center,and the normal errors of the discrete points were calculated.Third,a tooth surface error correction model is established,and the tooth surface error was corrected using the Levenberg-Marquard algorithm with trust region strategy and least square method.Finally,grinding experiments were carried out on the machining parameters obtained by Levenberg-Marquard algorithm with trust region strategy,which had a better effect on tooth surface error correction than the least square method.After the tooth surface error is corrected,the maximum absolute error is reduced from 30.9μm before correction to 6.8μm,the root mean square of the concave error is reduced from 15.1 to 2.1μm,the root mean square of the convex error is reduced from 10.8 to 1.8μm,and the sum of squared errors of the concave and convex surfaces was reduced from 15471 to 358μm^(2).It is verified that the Levenberg-Marquard algorithm with trust region strategy has a good accuracy for the tooth surface error correction of hypoid gear machined by duplex helical method.展开更多
The safety monitoring of lithium-ion batteries(LIBs) is of great significance for realizing all-climate and full-lifespan battery management. In-situ measurement of anode potential with implanted reference electrodes(...The safety monitoring of lithium-ion batteries(LIBs) is of great significance for realizing all-climate and full-lifespan battery management. In-situ measurement of anode potential with implanted reference electrodes(REs) has proven to be effective to monitor and avoid the occurrence of severe side reactions like Li plating to ensure the safe and fast charging. However, the intrinsic measurement errors caused by local blocking effects, which also can be referred to as potential artefacts, are seldom taken into consideration in existing studies, yet they highly dominate the correctness of conclusions inferred from REs. In this study, aiming at exploring the physical origin of the measurement errors and ensure reliable potential monitoring, electrochemical and post-mortem tests are conducted using commercial pouch cells with implanted REs. Corresponding electrochemical model which describes the blocking effects, is established to validate the abnormal absence of lithium plating that predicted by measured anode potentials under various charging rates. Theoretical derivation is further presented to explain the error sources, which can be attributed to increased local liquid potential of the RE position. Most importantly, with the guidance of error analysis, a novel parameter-independent error correction method for RE measurements is proposed for the first time, which is proven to be adequate to estimate the real anode potentials and deduce the critical C-rate of Li plating with extra safety margin. After error correction, the resulting critical C-rates are all within the range of 0.55 ± 0.03 C, which is close to the C-rate of 0.6–0.7 C obtained from experiments. In addition, this error correction method can be performed conveniently with only some simple RE measurements of polarization voltages, totally independent of battery electrochemical and geometric parameters. This study provides highly practical error correction method for RE measurements in real LIBs, substantially facilitating the fast diagnosis and safety evaluation of Li plating during charging of LIBs.展开更多
In order to improve the process precision of an XY laser annealing table, a geometric error modeling, and an identification and compensation method were proposed. Based on multi-body system theory, a geometric error m...In order to improve the process precision of an XY laser annealing table, a geometric error modeling, and an identification and compensation method were proposed. Based on multi-body system theory, a geometric error model for the laser annealing table was established. It supports the identification of 7 geometric errors affecting the annealing accuracy. An original identification method was presented to recognize these geometric errors. Positioning errors of 5 lines in the workspace were measured by a laser interferometer, and the 7 geometric errors were identified by the proposed algorithm. Finally, a software-based error compensation method was adopted, and a compensation mechanism was developed in a postprocessor based on LabVIEW. The identified geometric errors can be compensated by converting ideal NC codes to actual NC codes. A validation experiment has been conducted on the laser annealing table, and the results indicate that positioning errors of two validation lines decreased from ±37 μm and ±33 μm to ±5 μm and ±4.5 μm, respectively. The geometric error modeling, identification and compensation method presented in this work can be straightforwardly extended to any configurations of 2-dimensional worktable.展开更多
Spatial linear features are often represented as a series of line segments joined by measured endpoints in surveying and geographic information science.There are not only the measuring errors of the endpoints but also...Spatial linear features are often represented as a series of line segments joined by measured endpoints in surveying and geographic information science.There are not only the measuring errors of the endpoints but also the modeling errors between the line segments and the actual geographical features.This paper presents a Brownian bridge error model for line segments combining both the modeling and measuring errors.First,the Brownian bridge is used to establish the position distribution of the actual geographic feature represented by the line segment.Second,an error propagation model with the constraints of the measuring error distribution of the endpoints is proposed.Third,a comprehensive error band of the line segment is constructed,wherein both the modeling and measuring errors are contained.The proposed error model can be used to evaluate line segments’overall accuracy and trustability influenced by modeling and measuring errors,and provides a comprehensive quality indicator for the geospatial data.展开更多
Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this...Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this work, we propose a convenient look-up-table-based (LUT-based) method to compensate for the non-linear error in captured fringe patterns. Without extra calibration, this LUT-based method completely utilizes the captured fringe pattern by recording the full-field differences. Then, a phase compensation map is established to revise the measured phase. Experimental results demonstrate that this method works effectively.展开更多
This paper proposes a new method for measurement of the roll error motion of a slide table in a precision linear slide. The proposed method utilizes a pair of clinometers in the production process of a precision linea...This paper proposes a new method for measurement of the roll error motion of a slide table in a precision linear slide. The proposed method utilizes a pair of clinometers in the production process of a precision linear slide, where the roll error motion measurement will be carried out repeatedly to confirm whether the surface form errors of slide guideways in the linear slide are su ciently corrected by hand scraping process. In the proposed method, one of the clinometers is mounted on the slide table, while the other is placed on a vibration isolation table, on which the precision linear slide is mounted, so that influences of external disturbances can be cancelled. An experimental setup is built on a vibration isolation table, and some experiments are carried out to verify the feasibility of the proposed method.展开更多
For the data with error of measurement in historical samples, the empirical Bayes test rule for the parameter of Rayleigh distribution is constructed, and the asymptotically optimal property is obtained. It is shown t...For the data with error of measurement in historical samples, the empirical Bayes test rule for the parameter of Rayleigh distribution is constructed, and the asymptotically optimal property is obtained. It is shown that the convergence rate of the proposed EB test rule can be arbitrarily close to O(n-1/2) under suitable conditions.展开更多
A technique for compensating the errors of coordinate measuring machines (CMMs) with low stiffness is proposed. Some additional items related with the force deformation are introduced to the error compensation aquatio...A technique for compensating the errors of coordinate measuring machines (CMMs) with low stiffness is proposed. Some additional items related with the force deformation are introduced to the error compensation aquations. The research was carried on a moving colunm horizontal arm CMM. Experimental results show that both the effects of systematic components of error motions and force deformations are greatly reduced, which shows the effectiveness of proposed technique.展开更多
Control charts(CCs)are one of the main tools in Statistical Process Control that have been widely adopted in manufacturing sectors as an effective strategy for malfunction detection throughout the previous decades.Mea...Control charts(CCs)are one of the main tools in Statistical Process Control that have been widely adopted in manufacturing sectors as an effective strategy for malfunction detection throughout the previous decades.Measurement errors(M.E’s)are involved in the quality characteristic of interest,which can effect the CC’s performance.The authors explored the impact of a linearmodel with additive covariate M.E on the multivariate cumulative sum(CUSUM)CC for a specific kind of data known as compositional data(CoDa).The average run length(ARL)is used to assess the performance of the proposed chart.The results indicate that M.E’s significantly affects themultivariate CUSUM-CoDaCCs.The authors haveused theMarkov chainmethod to study the impact of different involved parameters using six different cases for the variance-covariance matrix(VCM)(i.e.,uncorrelated with equal variances,uncorrelated with unequal variances,positively correlated with equal variances,positively correlated with unequal variances,negatively correlatedwith equal variances and negatively correlated with unequal variances).The authors concluded that the error VCM has a negative impact on the performance of themultivariate CUSUM-CoDa CC,as the ARL increases with an increase in the value of the error VCM.The subgroup size m and powering operator b positively impact the proposed CC,as the ARL decreases with an increase in m or b.The number of variables p also has a negative impact on the performance of the proposed CC,as the values of ARL increase with an increase in p.For the implementation of the proposal,two illustrated examples have been reported formultivariate CUSUM-CoDaCCs inthe presence ofM.E’s.Onedealswith themanufacturingprocessof uncoated aspirin tablets,and the other is based on monitoring the machines involved in the muesli manufacturing process.展开更多
Suppose that several different imperfect instruments and one perfect instrument are independently used to measure some characteristics of a population. Thus, measurements of two or more sets of samples with varying ac...Suppose that several different imperfect instruments and one perfect instrument are independently used to measure some characteristics of a population. Thus, measurements of two or more sets of samples with varying accuracies are obtained. Statistical inference should be based on the pooled samples. In this article, the authors also assumes that all the imperfect instruments are unbiased. They consider the problem of combining this information to make statistical tests for parameters more relevant. They define the empirical likelihood ratio functions and obtain their asymptotic distributions in the presence of measurement error.展开更多
The variation of air temperature measurement errors using two different radiation shields (DTR502B Vaisala,Finland,and HYTFZ01,Huayun Tongda Satcom,China) was studied.Datasets were collected in the field at the Daxi...The variation of air temperature measurement errors using two different radiation shields (DTR502B Vaisala,Finland,and HYTFZ01,Huayun Tongda Satcom,China) was studied.Datasets were collected in the field at the Daxing weather station in Beijing from June 2011 to May 2012.Most air temperature values obtained with these two commonly used radiation shields were lower than the reference records obtained with the new Fiber Reinforced Polymers (FRP) Stevenson screen.In most cases,the air temperature errors when using the two devices were smaller on overcast and rainy days than on sunny days; and smaller when using the imported rather than the Chinese shield.The measured errors changed sharply at sunrise and sunset,and reached maxima at noon.Their diurnal variation characteristics were,naturally,related to changes in solar radiation.The relationships between the record errors,global radiation,and wind speed were nonlinear.An improved correction method was proposed based on the approach described by Nakamura and Mahrt (2005) (NM05),in which the impact of the solar zenith angle (SZA) on the temperature error is considered and extreme errors due to changes in SZA can be corrected effectively.Measurement errors were reduced significantly after correction by either method for both shields.The error reduction rate using the improved correction method for the Chinese and imported shields were 3.3% and 40.4% higher than those using the NM05 method,respectively.展开更多
When tubules regularly arranged are welded onto a bobbin by robot, the position and orientation of some tubules may be changed by such factors as thermal deformations and positioning errors etc. Which make it very dif...When tubules regularly arranged are welded onto a bobbin by robot, the position and orientation of some tubules may be changed by such factors as thermal deformations and positioning errors etc. Which make it very difficult to weld automatically and continuously by the method of teaching and playing. In this paper, a kind of error measuring system is presented. By which the position and orientation errors of tubules relative to the teaching one can be measured. And, a method to correct the locus errors is also proposed, by which the moving locus planned via teaching points can be corrected in real time according to measured error parameters. So that, just by teaching one, all tubules on a bobbin could be welded automatically.展开更多
As an important optical constant of optical properties for spectacle lens,the refractive index measurement is studied using V prism refractometer. In the experiment,according to various factors inducing measurement er...As an important optical constant of optical properties for spectacle lens,the refractive index measurement is studied using V prism refractometer. In the experiment,according to various factors inducing measurement error,the experimental results are analyzed,which include right angle deviation,contact liquid,curvature,and focusing accuracy. The study results show that focusing accuracy is the most important factor of influence for measurement,consists of contact liquid wettability,sample shape,and effective width of light transmission. In addition,the refractive index measurement is less affected by angle deviation of sample and the refractive index deviation of contact liquid. On the basis of the experimental data analysis,it is possible to relax the deviation of right angle of the sample to 1' or 2'.展开更多
文摘In this paper,an antenna array composed of circular array and orthogonal linear array is proposed by using the design of long and short baseline“orthogonal linear array”and the circular array ambiguity resolution design of multi-group baseline clustering.The effectiveness of the antenna array in this paper is verified by sufficient simulation and experiment.After the system deviation correction work,it is found that in the L/S/C/X frequency bands,the ambiguity resolution probability is high,and the phase difference system error between each channel is basically the same.The angle measurement error is less than 0.5°,and the positioning error is less than 2.5 km.Notably,as the center frequency increases,calibration consistency improves,and the calibration frequency points become applicable over a wider frequency range.At a center frequency of 11.5 GHz,the calibration frequency point bandwidth extends to 1200 MHz.This combined antenna array deployment holds significant promise for a wide range of applications in contemporary wireless communication systems.
文摘The assessment of the measurement error status of online Capacitor Voltage Transformers (CVT) within the power grid is of profound significance to the equitable trade of electric energy and the secure operation of the power grid. This paper advances an online CVT error state evaluation method, anchored in the in-phase relationship and outlier detection. Initially, this method leverages the in-phase relationship to obviate the influence of primary side fluctuations in the grid on assessment accuracy. Subsequently, Principal Component Analysis (PCA) is employed to meticulously disentangle the error change information inherent in the CVT from the measured values and to compute statistics that delineate the error state. Finally, the Local Outlier Factor (LOF) is deployed to discern outliers in the statistics, with thresholds serving to appraise the CVT error state. Experimental results incontrovertibly demonstrate the efficacy of this method, showcasing its prowess in effecting online tracking of CVT error changes and conducting error state assessments. The discernible enhancements in reliability, accuracy, and sensitivity are manifest, with the assessment accuracy reaching an exemplary 0.01%.
基金supported by the National Defense Foundation of China(71601183)
文摘For the product degradation process with random effect (RE), measurement error (ME) and nonlinearity in step-stress accelerated degradation test (SSADT), the nonlinear Wiener based degradation model with RE and ME is built. An analytical approximation to the probability density function (PDF) of the product's lifetime is derived in a closed form. The process and data of SSADT are analyzed to obtain the relation model of the observed data under each accelerated stress. The likelihood function for the population-based observed data is constructed. The population-based model parameters and its random coefficient prior values are estimated. According to the newly observed data of the target product in SSADT, an analytical approximation to the PDF of its residual lifetime (RL) is derived in accordance with its individual degradation characteristics. The parameter updating method based on Bayesian inference is applied to obtain the posterior value of random coefficient of the RL model. A numerical example by simulation is analyzed to verify the accuracy and advantage of the proposed model.
文摘In order to discover the range of various errors in Chinese precipitation measurements and seek a correction method, 30 precipitation evaluation stations were set up countrywide before 1993. All the stations are reference stations in China. To seek a correction method for wind-induced error, a precipitation correction instrument called the "horizontal precipitation gauge" was devised beforehand. Field intercomparison observations regarding 29,000 precipitation events have been conducted using one pit gauge, two elevated operational gauges and one horizontal gauge at the above 30 stations. The range of precipitation measurement errors in China is obtained by analysis of intercomparison measurement results. The distribution of random errors and systematic errors in precipitation measurements are studied in this paper. A correction method, especially for wind-induced errors, is developed. The results prove that a correlation of power function exists between the precipitation amount caught by the horizontal gauge and the absolute difference of observations implemented by the operational gauge and pit gauge. The correlation coefficient is 0.99. For operational observations, precipitation correction can be carried out only by parallel observation with a horizontal precipitation gauge. The precipitation accuracy after correction approaches that of the pit gauge. The correction method developed is simple and feasible.
文摘The digital signal-obtaining for gyroscope is given. The single optic-fiber sensor via modulating intensity of light is used as measuring eonlponent . The influence on static transmission properties resulting from the special working environnlent (e. g. cryogenic and vacuum) ,the measure error because of tile reflector shape of rotor,the abnormity of facula from sensor caused by the existence of engraving error,and tile fixing error of sensor and the error of machine tool's initial lignnlent are investigated. The mathematic model in every condition is founded, the simulation and relative experiments ale done and the outeome is analyzed. The mathematic model and method of compensating technology are studied and some relative experiments are made. The result of study is usefid to improvement of the signal-obtaining system.
基金Projects(51475462,61374138,61370031)supported by the National Natural Science Foundation of China
文摘Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item's individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.
基金Supported by the National Natural Science Foundation of China(61877023)the Fundamental Research Funds for the Central Universities(CCNU19TD009)。
文摘For high-dimensional models with a focus on classification performance,the?1-penalized logistic regression is becoming important and popular.However,the Lasso estimates could be problematic when penalties of different coefficients are all the same and not related to the data.We propose two types of weighted Lasso estimates,depending upon covariates determined by the Mc Diarmid inequality.Given sample size n and a dimension of covariates p,the finite sample behavior of our proposed method with a diverging number of predictors is illustrated by non-asymptotic oracle inequalities such as the?1-estimation error and the squared prediction error of the unknown parameters.We compare the performance of our method with that of former weighted estimates on simulated data,then apply it to do real data analysis.
基金Projects(52075552,51575533,51805555,11662004)supported by the National Natural Science Foundation of China。
文摘In this work,synchronous cutting of concave and convex surfaces was achieved using the duplex helical method for the hypoid gear,and the problem of tooth surface error correction was studied.First,the mathematical model of the hypoid gears machined by the duplex helical method was established.Second,the coordinates of discrete points on the tooth surface were obtained by measurement center,and the normal errors of the discrete points were calculated.Third,a tooth surface error correction model is established,and the tooth surface error was corrected using the Levenberg-Marquard algorithm with trust region strategy and least square method.Finally,grinding experiments were carried out on the machining parameters obtained by Levenberg-Marquard algorithm with trust region strategy,which had a better effect on tooth surface error correction than the least square method.After the tooth surface error is corrected,the maximum absolute error is reduced from 30.9μm before correction to 6.8μm,the root mean square of the concave error is reduced from 15.1 to 2.1μm,the root mean square of the convex error is reduced from 10.8 to 1.8μm,and the sum of squared errors of the concave and convex surfaces was reduced from 15471 to 358μm^(2).It is verified that the Levenberg-Marquard algorithm with trust region strategy has a good accuracy for the tooth surface error correction of hypoid gear machined by duplex helical method.
基金supported by the Ministry of Science and Technology of China(2019YFE0100200)funded by the National Natural Science Foundation of China(51807108,51877121,52037006)。
文摘The safety monitoring of lithium-ion batteries(LIBs) is of great significance for realizing all-climate and full-lifespan battery management. In-situ measurement of anode potential with implanted reference electrodes(REs) has proven to be effective to monitor and avoid the occurrence of severe side reactions like Li plating to ensure the safe and fast charging. However, the intrinsic measurement errors caused by local blocking effects, which also can be referred to as potential artefacts, are seldom taken into consideration in existing studies, yet they highly dominate the correctness of conclusions inferred from REs. In this study, aiming at exploring the physical origin of the measurement errors and ensure reliable potential monitoring, electrochemical and post-mortem tests are conducted using commercial pouch cells with implanted REs. Corresponding electrochemical model which describes the blocking effects, is established to validate the abnormal absence of lithium plating that predicted by measured anode potentials under various charging rates. Theoretical derivation is further presented to explain the error sources, which can be attributed to increased local liquid potential of the RE position. Most importantly, with the guidance of error analysis, a novel parameter-independent error correction method for RE measurements is proposed for the first time, which is proven to be adequate to estimate the real anode potentials and deduce the critical C-rate of Li plating with extra safety margin. After error correction, the resulting critical C-rates are all within the range of 0.55 ± 0.03 C, which is close to the C-rate of 0.6–0.7 C obtained from experiments. In addition, this error correction method can be performed conveniently with only some simple RE measurements of polarization voltages, totally independent of battery electrochemical and geometric parameters. This study provides highly practical error correction method for RE measurements in real LIBs, substantially facilitating the fast diagnosis and safety evaluation of Li plating during charging of LIBs.
基金Projects(2012ZX04010-011,2009ZX02037-02) supported by the Key National Science and Technology Project of China
文摘In order to improve the process precision of an XY laser annealing table, a geometric error modeling, and an identification and compensation method were proposed. Based on multi-body system theory, a geometric error model for the laser annealing table was established. It supports the identification of 7 geometric errors affecting the annealing accuracy. An original identification method was presented to recognize these geometric errors. Positioning errors of 5 lines in the workspace were measured by a laser interferometer, and the 7 geometric errors were identified by the proposed algorithm. Finally, a software-based error compensation method was adopted, and a compensation mechanism was developed in a postprocessor based on LabVIEW. The identified geometric errors can be compensated by converting ideal NC codes to actual NC codes. A validation experiment has been conducted on the laser annealing table, and the results indicate that positioning errors of two validation lines decreased from ±37 μm and ±33 μm to ±5 μm and ±4.5 μm, respectively. The geometric error modeling, identification and compensation method presented in this work can be straightforwardly extended to any configurations of 2-dimensional worktable.
基金National Natural Science Foundation of China(Nos.42071372,42221002)。
文摘Spatial linear features are often represented as a series of line segments joined by measured endpoints in surveying and geographic information science.There are not only the measuring errors of the endpoints but also the modeling errors between the line segments and the actual geographical features.This paper presents a Brownian bridge error model for line segments combining both the modeling and measuring errors.First,the Brownian bridge is used to establish the position distribution of the actual geographic feature represented by the line segment.Second,an error propagation model with the constraints of the measuring error distribution of the endpoints is proposed.Third,a comprehensive error band of the line segment is constructed,wherein both the modeling and measuring errors are contained.The proposed error model can be used to evaluate line segments’overall accuracy and trustability influenced by modeling and measuring errors,and provides a comprehensive quality indicator for the geospatial data.
基金the financial support provided by the National Natural Science Foundation of China(11472267 and 11372182)the National Basic Research Program of China(2012CB937504)
文摘Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this work, we propose a convenient look-up-table-based (LUT-based) method to compensate for the non-linear error in captured fringe patterns. Without extra calibration, this LUT-based method completely utilizes the captured fringe pattern by recording the full-field differences. Then, a phase compensation map is established to revise the measured phase. Experimental results demonstrate that this method works effectively.
基金supported by Japan Society for the Promotion and Science (JSPS)
文摘This paper proposes a new method for measurement of the roll error motion of a slide table in a precision linear slide. The proposed method utilizes a pair of clinometers in the production process of a precision linear slide, where the roll error motion measurement will be carried out repeatedly to confirm whether the surface form errors of slide guideways in the linear slide are su ciently corrected by hand scraping process. In the proposed method, one of the clinometers is mounted on the slide table, while the other is placed on a vibration isolation table, on which the precision linear slide is mounted, so that influences of external disturbances can be cancelled. An experimental setup is built on a vibration isolation table, and some experiments are carried out to verify the feasibility of the proposed method.
基金The NSF(1012138,0612163)of Guangdong Ocean Unversitythe Scientific and Technological Project(2010C3112006)of Zhanjiang
文摘For the data with error of measurement in historical samples, the empirical Bayes test rule for the parameter of Rayleigh distribution is constructed, and the asymptotically optimal property is obtained. It is shown that the convergence rate of the proposed EB test rule can be arbitrarily close to O(n-1/2) under suitable conditions.
文摘A technique for compensating the errors of coordinate measuring machines (CMMs) with low stiffness is proposed. Some additional items related with the force deformation are introduced to the error compensation aquations. The research was carried on a moving colunm horizontal arm CMM. Experimental results show that both the effects of systematic components of error motions and force deformations are greatly reduced, which shows the effectiveness of proposed technique.
基金supported by the National Natural Science Foundation of China (Grant No.71802110)the Humanity and Social Science Foundation of theMinistry of Education of China (Grant No.19YJA630061).
文摘Control charts(CCs)are one of the main tools in Statistical Process Control that have been widely adopted in manufacturing sectors as an effective strategy for malfunction detection throughout the previous decades.Measurement errors(M.E’s)are involved in the quality characteristic of interest,which can effect the CC’s performance.The authors explored the impact of a linearmodel with additive covariate M.E on the multivariate cumulative sum(CUSUM)CC for a specific kind of data known as compositional data(CoDa).The average run length(ARL)is used to assess the performance of the proposed chart.The results indicate that M.E’s significantly affects themultivariate CUSUM-CoDaCCs.The authors haveused theMarkov chainmethod to study the impact of different involved parameters using six different cases for the variance-covariance matrix(VCM)(i.e.,uncorrelated with equal variances,uncorrelated with unequal variances,positively correlated with equal variances,positively correlated with unequal variances,negatively correlatedwith equal variances and negatively correlated with unequal variances).The authors concluded that the error VCM has a negative impact on the performance of themultivariate CUSUM-CoDa CC,as the ARL increases with an increase in the value of the error VCM.The subgroup size m and powering operator b positively impact the proposed CC,as the ARL decreases with an increase in m or b.The number of variables p also has a negative impact on the performance of the proposed CC,as the values of ARL increase with an increase in p.For the implementation of the proposal,two illustrated examples have been reported formultivariate CUSUM-CoDaCCs inthe presence ofM.E’s.Onedealswith themanufacturingprocessof uncoated aspirin tablets,and the other is based on monitoring the machines involved in the muesli manufacturing process.
基金This work is supported by NNSF of China (10571093)
文摘Suppose that several different imperfect instruments and one perfect instrument are independently used to measure some characteristics of a population. Thus, measurements of two or more sets of samples with varying accuracies are obtained. Statistical inference should be based on the pooled samples. In this article, the authors also assumes that all the imperfect instruments are unbiased. They consider the problem of combining this information to make statistical tests for parameters more relevant. They define the empirical likelihood ratio functions and obtain their asymptotic distributions in the presence of measurement error.
基金financially supported by the Meteorological Key Technology Integration and Application Project funded by the China Meteorological Administration (Grant No.CAMGJ2012M01)the Special Fund of Beijing Meteorological Bureau (Grant No.2011BMBKYZX04)the Nation Natural Science Foundation of China (Grant No.41275114)
文摘The variation of air temperature measurement errors using two different radiation shields (DTR502B Vaisala,Finland,and HYTFZ01,Huayun Tongda Satcom,China) was studied.Datasets were collected in the field at the Daxing weather station in Beijing from June 2011 to May 2012.Most air temperature values obtained with these two commonly used radiation shields were lower than the reference records obtained with the new Fiber Reinforced Polymers (FRP) Stevenson screen.In most cases,the air temperature errors when using the two devices were smaller on overcast and rainy days than on sunny days; and smaller when using the imported rather than the Chinese shield.The measured errors changed sharply at sunrise and sunset,and reached maxima at noon.Their diurnal variation characteristics were,naturally,related to changes in solar radiation.The relationships between the record errors,global radiation,and wind speed were nonlinear.An improved correction method was proposed based on the approach described by Nakamura and Mahrt (2005) (NM05),in which the impact of the solar zenith angle (SZA) on the temperature error is considered and extreme errors due to changes in SZA can be corrected effectively.Measurement errors were reduced significantly after correction by either method for both shields.The error reduction rate using the improved correction method for the Chinese and imported shields were 3.3% and 40.4% higher than those using the NM05 method,respectively.
文摘When tubules regularly arranged are welded onto a bobbin by robot, the position and orientation of some tubules may be changed by such factors as thermal deformations and positioning errors etc. Which make it very difficult to weld automatically and continuously by the method of teaching and playing. In this paper, a kind of error measuring system is presented. By which the position and orientation errors of tubules relative to the teaching one can be measured. And, a method to correct the locus errors is also proposed, by which the moving locus planned via teaching points can be corrected in real time according to measured error parameters. So that, just by teaching one, all tubules on a bobbin could be welded automatically.
文摘As an important optical constant of optical properties for spectacle lens,the refractive index measurement is studied using V prism refractometer. In the experiment,according to various factors inducing measurement error,the experimental results are analyzed,which include right angle deviation,contact liquid,curvature,and focusing accuracy. The study results show that focusing accuracy is the most important factor of influence for measurement,consists of contact liquid wettability,sample shape,and effective width of light transmission. In addition,the refractive index measurement is less affected by angle deviation of sample and the refractive index deviation of contact liquid. On the basis of the experimental data analysis,it is possible to relax the deviation of right angle of the sample to 1' or 2'.