Aim Interactive multiple model(IMM) algorithm was introduced into two? stage estimation to improve the estimating accuracy for system position and velocity.Methods The state estimation was carried out in mixed coor...Aim Interactive multiple model(IMM) algorithm was introduced into two? stage estimation to improve the estimating accuracy for system position and velocity.Methods The state estimation was carried out in mixed coordinates according to the nonlinear measure equation, a generalized interactive acceleration compensation(IAC) algorithm in mixed coordinate was presented. Results Simulation result shows the estimation accuracy is improved through changing measure equation in polar coordinates. Conclusion The estimation accuracy for position and velocity estimation, has been improved greatly, and the proposed algorithm has the advantage of less calculating time comparing with other multiple model methods.展开更多
We propose a novel high-performance digital optical sensor based on the Mach-Zehnder interferential effect and the dual-microring resonators with the waveguide-coupled feedback. The simulation results show that the se...We propose a novel high-performance digital optical sensor based on the Mach-Zehnder interferential effect and the dual-microring resonators with the waveguide-coupled feedback. The simulation results show that the sensitivity of the sensor can be orders of magnitude higher than that of aconventional sensor, and high quality factor is not critical in it. Moreover, by optimizing the length of the feedback waveguide to be equal to the perimeter of the ring, the measurement range of the proposed sensor is twice as much as that of the conventional sensor in the weak coupling case.展开更多
For determining the accuracy of a calorimeter over the instrument’s entire measuring range,a novel method has been established.For this new approach,(a)benzoic acid(C_(6)H_(5)CO_(2)H) as a certified reference materia...For determining the accuracy of a calorimeter over the instrument’s entire measuring range,a novel method has been established.For this new approach,(a)benzoic acid(C_(6)H_(5)CO_(2)H) as a certified reference material(CRM),(b)SiO_(2) and(c)a mixture of CRM benzoic acid and SiO_(2) have been used.To illustrate the essential difference between 1)the novel analytical method for control of the entire measurement range and 2)the calorimeter calibration,both applications of benzoic acid(BA)have been demonstrated.An experimental result showed that BA was successfully used to check the whole calorimeter measurement range.The results also showed that the same new method was successfully applied to determine the limit of detection and quantification.A new instrument testing process and a new measurement technique have thus been established.In this way,the cost of using CRM to control the accuracy of measuring the entire measuring range of the calorimeter,as shown in this paper,is minimized.The requirements of the ISO/IEC 17025:2017 standard are satisfied.ISO/IEC 17025:2017,together with ISO 9001:2015(quality management systems),ISO 14001:2015(relate to environmental protection)and ISO45001:2018(occupational safety),constitute an integrated quality system by which a testing laboratory may also accredit.展开更多
Water content in output crude oil is hard to measure precisely because of wide range of dielectric coefficient of crude oil caused by injected dehydrating and demulsifying agents.The method to reduce measurement error...Water content in output crude oil is hard to measure precisely because of wide range of dielectric coefficient of crude oil caused by injected dehydrating and demulsifying agents.The method to reduce measurement error of water content in crude oil proposed in this paper is based on switching measuring ranges of on-line water content analyzer automatically.Measuring precision on data collected from oil field and analyzed by in-field operators can be impressively improved by using back propogation (BP) neural network to predict water content in output crude oil.Application results show that the difficulty in accurately measuring water-oil content ratio can be solved effectively through this combination of on-line measuring range automatic switching and real time prediction,as this method has been tested repeatedly on-site in oil fields with satisfactory prediction results.展开更多
The reflectometry is a common method used to measure the thickness of thin films. Using a conventional method,its measurable range is limited due to the low resolution of the current spectrometer embedded in the refle...The reflectometry is a common method used to measure the thickness of thin films. Using a conventional method,its measurable range is limited due to the low resolution of the current spectrometer embedded in the reflectometer.We present a simple method, using cubic spline interpolation to resample the spectrum with a high resolution,to extend the measurable transparent film thickness. A large measuring range up to 385 m in optical thickness is achieved with the commonly used system. The numerical calculation and experimental results demonstrate that using the FFT method combined with cubic spline interpolation resampling in reflectrometry, a simple,easy-to-operate, economic measuring system can be achieved with high measuring accuracy and replicability.展开更多
The dominant error source of mobile terminal location in wireless sensor networks (WSNs) is the non-line-of-sight (NLOS) propagation error. Among the algorithms proposed to mitigate the influence of NLOS propagati...The dominant error source of mobile terminal location in wireless sensor networks (WSNs) is the non-line-of-sight (NLOS) propagation error. Among the algorithms proposed to mitigate the influence of NLOS propagation error, residual test (RT) is an efficient one, however with high computational complexity (CC). An improved algorithm that memorizes the light of sight (LOS) range measurements (RMs) identified memorize LOS range measurements identified residual test (MLSI-RT) is presented in this paper to address this problem. The MLSI-RT is based on the assumption that when all RMs are from LOS propagations, the normalized residual follows the central Chi-Square distribution while for NLOS cases it is non-central. This study can reduce the CC by more than 90%.展开更多
We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacem...We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacement sensor based on the Michelson interference principle, a 3D platform based on vertical scanning, a measuring and control circuit, and an industrial control computer. It was a closed loop control system, which changed the traditional moving stylus scanning style into a moving platform scanning style. When the workpiece was measured, the lever of the displacement sensor returned to the balanced position in every sample interval according to the zero offset of the displacement sensor. The non-linear error caused by the rotation of the lever was, therefore, very small even if the measuring range was wide. The instrument can measure the roughness and the profile size of a curved surface.展开更多
Localization is one of the fundamental problems in wireless sensor networks (WSNs), since locations of the sensor nodes are critical to both network operations and most application level tasks. Although the GPS base...Localization is one of the fundamental problems in wireless sensor networks (WSNs), since locations of the sensor nodes are critical to both network operations and most application level tasks. Although the GPS based localization schemes can be used to determine node locations within a few meters, the cost of GPS devices and non-availability of GPS signals in confined environments prevent their use in large scale sensor networks. There exists an extensive body of research that aims at obtaining locations as well as spatial relations of nodes in WSNs without requiring specialized hardware and/or employing only a limited number of anchors that are aware of their own locations. In this paper, we present a comprehensive survey on sensor localization in WSNs covering motivations, problem formulations, solution approaches and performance summary. Future research issues will also be discussed.展开更多
A new distributed fusion method of radar/infrared (IR) tracking system based on separation and combination of the measurements is proposed by analyzing the influence of rate measurement. The rate information separat...A new distributed fusion method of radar/infrared (IR) tracking system based on separation and combination of the measurements is proposed by analyzing the influence of rate measurement. The rate information separated from the radar measurements together with measurements of IR form a pseudo vector of IR, and the corresponding filter is designed. The results indicate that the method not only makes a great improvement to the local tracker's performance, but also improves the global tracking precision efficiently.展开更多
Navigation is a critical requirement for the operation of Autonomous Underwater Vehicles(AUVs).To estimate the vehicle position,we present an algorithm using an extended Kalman filter(EKF) to integrate dead-reckon...Navigation is a critical requirement for the operation of Autonomous Underwater Vehicles(AUVs).To estimate the vehicle position,we present an algorithm using an extended Kalman filter(EKF) to integrate dead-reckoning position with acoustic ranges from multiple beacons pre-deployed in the operating environment.Owing to high latency,variable sound speed multipath transmissions and unreliability in acoustic measurements,outlier recognition techniques are proposed as well.The navigation algorithm has been tested by the recorded data of deep sea AUV during field operations in a variety of environments.Our results show the improved performance over prior techniques based on position computation.展开更多
Wavelength 1064 nm is one of the most widely used laser wavelengths in industries and science. The high-precision measurement of the refractive index of optical materials at 1064 nm is significant for improving the op...Wavelength 1064 nm is one of the most widely used laser wavelengths in industries and science. The high-precision measurement of the refractive index of optical materials at 1064 nm is significant for improving the optical design. We study the direct measurement of refractive index at 1064nm of lasers, including cMcium fluoride (CaF2), fused silica and zinc selenide (ZnSe), whose refractive indices cover a large range from 1.42847 to 2.48272. The measurement system is built based on the quasi-common-path Nd:YAG laser feedback interferometry. The thickness can be measured simultaneously with the refractive index. The results demonstrate that the system has absolute uncertainties of ~10-5 and ~10-4 mm in refractive index and thickness measurement, respectively.展开更多
A simple method for measuring grating groove density as well as its position and orientation is proposed based on the idea of ERT(Experimental Ray Tracing).Conventional methods only measure grating groove density with...A simple method for measuring grating groove density as well as its position and orientation is proposed based on the idea of ERT(Experimental Ray Tracing).Conventional methods only measure grating groove density with accuracy limited by its rotary stage and goniometer.The method proposed in the paper utilizes linear guides which could be calibrated to much higher accuracy.It is applicable to gratings of arbitrary surface profile or mosaic of a group of various gratings.Various measurement error sources are simulated by the Monte Carlo method and the results show high accuracy capability of grating parameters identification.A verification testing is performed.The accuracy dependency on main configuration parameters is evaluated.A method to expand measurement range by double wavelength is also discussed.展开更多
Power generation using dielectric elastomer transducers is cheap, light, stackable, easy to install, and highly efficient. Also, since the dielectric elastomer transducer is an actuator developed into an artificial mu...Power generation using dielectric elastomer transducers is cheap, light, stackable, easy to install, and highly efficient. Also, since the dielectric elastomer transducer is an actuator developed into an artificial muscle, if the DE motor is further developed, it might be possibly be able to drive a vehicle. Efficient robot driving, various industrial machines and the use of dielectric elastomer sensors to optimize the driving may also help solve the above problems from the perspective of eco-driving. This paper describes the latest level of development of dielectric elastomers, their main problems and solutions to these problems, and their potential applications. The possibilities and concrete plans for building local global smart cities (including local generation power for local consumption), efficient transportation, and environmental monitoring systems utilizing dielectric elastomers are also discussed.展开更多
Shoemaking is one of the areas where CAD/CAM application is rapidly increasing.This paper introduces an integrated computer aided shoemaking system including human foot measuring,last (wooden model)measuring,last CAD/...Shoemaking is one of the areas where CAD/CAM application is rapidly increasing.This paper introduces an integrated computer aided shoemaking system including human foot measuring,last (wooden model)measuring,last CAD/CAM and pattern CAD/CAM.The project was supported by the 7th national economical 5 year plan.High technologies,suh as digital image processing,pattern rcognition,advanced geometrical modeling and a series of sophisticated equipments and devices are ap- plied in this integrated system.Parts of the system have become commercial products.展开更多
Flexible pressure sensors have attracted great attention due to their potential in the wearable devices market and in particular in human-machine interactive interfaces.Pressure sensors with high sensitivity,wide meas...Flexible pressure sensors have attracted great attention due to their potential in the wearable devices market and in particular in human-machine interactive interfaces.Pressure sensors with high sensitivity,wide measurement range,and low-cost are now highly desired for such practical applications.In the present investigation,an ultrasensitive pressure sensor with wide measurement range has been successfully fabricated.Carbon nanotubes(CNTs)(uniformly sprayed on the surface of paper)comprise the sensitivity material,while lithographed interdigital electrodes comprise the substrate.Due to the synergistic effects of CNT’s high specific surface area,paper’s porous structure,interdigital electrodes’efficient contact with CNT,our pressure sensor realizes a wide measurement range from 0 to 140 kPa and exhibits excellent stability through 15,000 cycles of testing.For the paper-based CNT film/interdigitated structure(PCI)pressure sensor,the connection area between the sensitive material and interdigital electrodes dominates in the lowpressure region,while internal change within the sensitive materials plays the leading role in the high-pressure region.Additionally,the PCI pressure sensor not only displays a high sensitivity of 2.72 kPa–1(up to 35 kPa)but also can detect low pressures,such as that exerted by a resting mung bean(about 8 Pa).When attached to the surface of a human body,the pressure sensor can monitor physiological signals,such as wrist movement,pulse beats,or movement of throat muscles.Furthermore,the pressure sensor array can identify the spatial pressure distribution,with promising applications in humanmachine interactive interfaces.展开更多
A novel photonic-assisted approach to microwave frequency measurement is proposed and experimentally demonstrated. The proposed scheme is based on the frequency-to-power mapping with different transmis- sion responses...A novel photonic-assisted approach to microwave frequency measurement is proposed and experimentally demonstrated. The proposed scheme is based on the frequency-to-power mapping with different transmis- sion responses. A polarizer is used in one output branch of a phase modulator to simultaneously implement phase modulation and intensity modulation. Owing to the complementary nature of the transmission re- sponses and the Mach-Zehnder interferometers (MZIs), this scheme theoretically provides high resolution and tunable measurement range. The measurement errors in the experimental results can be kept within 0.2 GHz over a freauencv ranee from 0.1 to 5.3 GHz.展开更多
DEA(data envelopment analysis) models can be divided into two groups: Radial DEA and non-radial DEA, and the latter has higher discriminatory power than the former. The range adjusted measure(RAM) is an effective and ...DEA(data envelopment analysis) models can be divided into two groups: Radial DEA and non-radial DEA, and the latter has higher discriminatory power than the former. The range adjusted measure(RAM) is an effective and widely used non-radial DEA approach. However, to the best of our knowledge, there is no literature on the integer-valued super-efficiency RAM-DEA model,especially when undesirable outputs are included. We first propose an integer-valued RAM-DEA mode with undesirable outputs and then extend this model to an integer-valued super-efficiency RAM-DEA model with undesirable outputs. Compared with other DEA models, the two novel models have many advantages: 1) They are non-oriented and non-radial DEA models, which enable decision makers to simultaneously and non-proportionally improve inputs and outputs;2) They can handle integer-valued variables and undesirable outputs, so the results obtained are more reliable;3) The results can be easily obtained as it is based on linear programming;4) The integer-valued super-efficiency RAM-DEA model with undesirable outputs can be used to accurately rank efficient DMUs. The proposed models are applied to evaluate the efficiency of China’s regional transportation systems(RTSs) considering the number of transport accidents(an undesirable output). The results help decision makers improve the performance of inefficient RTSs and analyze the strengths of efficient RTSs.展开更多
Flexible pressure sensors have broad application prospects,such as human motion monitoring and personalized recognition.However,their applicability is limited by complex structures,low output performance,low sensitivi...Flexible pressure sensors have broad application prospects,such as human motion monitoring and personalized recognition.However,their applicability is limited by complex structures,low output performance,low sensitivity,and narrow measurement range.In this study,we report a single-electrode spongy triboelectric sensor(SSTS)mainly composed of spongy composite multi-walled carbon nanotubes/polydimethylsiloxane(MWCNT/PDMS)film and conductive fabric,which can simultaneously generate contact electrification and electrostatic induction coupling in a single-electrode contact-separation mode.The SSTS combines the triboelectric effect,properties of doping material,and spongy porous structure(soft sugar as a sacrificial template).An SSTS with an MWCNT content of 10 wt%and a porosity of 64%exhibits high sensitivity,a wide measurement range,and excellent linearity.It also displays two sensitivity regions(slopes):1.324 V/kPa from 1.5 to 28 kPa in the low-pressure range and 0.096 V/kPa from 28 to 316.5 kPa in the high-pressure range,with linearities of 0.980 and 0.979,respectively.Furthermore,the SSTS delivers a high-performance output and high stability,thus enhancing the monitoring of hand pressure changes,human movement,personalized spatial recognition,and other detection tasks.This new strategy for human motion monitoring shows great potential in the healthcare fields,sports rehabilitation,and human-computer interactions.展开更多
The microring resonator has received increas- ing attention in the optical sensing application because of its micro-size, optical property, and high sensitivity. An additional waveguide is commonly used to change the ...The microring resonator has received increas- ing attention in the optical sensing application because of its micro-size, optical property, and high sensitivity. An additional waveguide is commonly used to change the output spectra in the early research on microring resonators. In this study, we proposed a nested microring resonator that doubles the free spectral range (FSR) compared with the conventional single microring. This structure improved the sensing property as the FSR in the filter output spectra could be considered as a measurement range in the microring sensor. Moreover, the parameters including the coupling coefficient of the three coupling sections, length of the U-bend waveguide, and effective index of a waveguide were tested and carefully selected to optimize the sensing properties. The relationship between these parameters and the output spectra was demonstrated. With linear sensitivity, the structure has a good potential in sensing application.展开更多
An optical fiber displacement sensor with a large measuring range for simultaneous displacement and temperature measurement is presented in this paper. We developed a specific transducer based on the piston and hydrau...An optical fiber displacement sensor with a large measuring range for simultaneous displacement and temperature measurement is presented in this paper. We developed a specific transducer based on the piston and hydraumatic structure to realize a large displacement measurement, which combined the large measuring range and high precision into a single sensor system. The spectrum showed two reflection peaks used to compensate for cross-sensitivity in the displacement detection. This displacement sensor can linearly work in a large measuring displacement range greater than 45 mm with a high sensitivity of 0.036nm/mm. The sensor we reported can be developed for real-time displacement monitoring in many industrial environments such as the mechanical shape or liquid level monitoring.展开更多
文摘Aim Interactive multiple model(IMM) algorithm was introduced into two? stage estimation to improve the estimating accuracy for system position and velocity.Methods The state estimation was carried out in mixed coordinates according to the nonlinear measure equation, a generalized interactive acceleration compensation(IAC) algorithm in mixed coordinate was presented. Results Simulation result shows the estimation accuracy is improved through changing measure equation in polar coordinates. Conclusion The estimation accuracy for position and velocity estimation, has been improved greatly, and the proposed algorithm has the advantage of less calculating time comparing with other multiple model methods.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB327601)
文摘We propose a novel high-performance digital optical sensor based on the Mach-Zehnder interferential effect and the dual-microring resonators with the waveguide-coupled feedback. The simulation results show that the sensitivity of the sensor can be orders of magnitude higher than that of aconventional sensor, and high quality factor is not critical in it. Moreover, by optimizing the length of the feedback waveguide to be equal to the perimeter of the ring, the measurement range of the proposed sensor is twice as much as that of the conventional sensor in the weak coupling case.
基金the funding by the Ministry of Education and Science,the Republic of Serbia for Registration(No.451-03-68/2022-14/200052)。
文摘For determining the accuracy of a calorimeter over the instrument’s entire measuring range,a novel method has been established.For this new approach,(a)benzoic acid(C_(6)H_(5)CO_(2)H) as a certified reference material(CRM),(b)SiO_(2) and(c)a mixture of CRM benzoic acid and SiO_(2) have been used.To illustrate the essential difference between 1)the novel analytical method for control of the entire measurement range and 2)the calorimeter calibration,both applications of benzoic acid(BA)have been demonstrated.An experimental result showed that BA was successfully used to check the whole calorimeter measurement range.The results also showed that the same new method was successfully applied to determine the limit of detection and quantification.A new instrument testing process and a new measurement technique have thus been established.In this way,the cost of using CRM to control the accuracy of measuring the entire measuring range of the calorimeter,as shown in this paper,is minimized.The requirements of the ISO/IEC 17025:2017 standard are satisfied.ISO/IEC 17025:2017,together with ISO 9001:2015(quality management systems),ISO 14001:2015(relate to environmental protection)and ISO45001:2018(occupational safety),constitute an integrated quality system by which a testing laboratory may also accredit.
基金Sponsored by the Basic Research Fundation of Beijing Institute of Technology (200705422009)
文摘Water content in output crude oil is hard to measure precisely because of wide range of dielectric coefficient of crude oil caused by injected dehydrating and demulsifying agents.The method to reduce measurement error of water content in crude oil proposed in this paper is based on switching measuring ranges of on-line water content analyzer automatically.Measuring precision on data collected from oil field and analyzed by in-field operators can be impressively improved by using back propogation (BP) neural network to predict water content in output crude oil.Application results show that the difficulty in accurately measuring water-oil content ratio can be solved effectively through this combination of on-line measuring range automatic switching and real time prediction,as this method has been tested repeatedly on-site in oil fields with satisfactory prediction results.
基金Supported by the National Natural Science Foundation of China under Grant No 11604115the Educational Commission of Jiangsu Province of China under Grant No 17KJA460004the Huaian Science and Technology Funds under Grant No HAC201701
文摘The reflectometry is a common method used to measure the thickness of thin films. Using a conventional method,its measurable range is limited due to the low resolution of the current spectrometer embedded in the reflectometer.We present a simple method, using cubic spline interpolation to resample the spectrum with a high resolution,to extend the measurable transparent film thickness. A large measuring range up to 385 m in optical thickness is achieved with the commonly used system. The numerical calculation and experimental results demonstrate that using the FFT method combined with cubic spline interpolation resampling in reflectrometry, a simple,easy-to-operate, economic measuring system can be achieved with high measuring accuracy and replicability.
基金supported by the State Key Program of National Natural Science of China (Grant No.60532030)the New Century Excellent Talents in University (Grant No.NCET-08-0333)the Natural Science Foundation of Shandong Province (Grant No.Y2007G10)
文摘The dominant error source of mobile terminal location in wireless sensor networks (WSNs) is the non-line-of-sight (NLOS) propagation error. Among the algorithms proposed to mitigate the influence of NLOS propagation error, residual test (RT) is an efficient one, however with high computational complexity (CC). An improved algorithm that memorizes the light of sight (LOS) range measurements (RMs) identified memorize LOS range measurements identified residual test (MLSI-RT) is presented in this paper to address this problem. The MLSI-RT is based on the assumption that when all RMs are from LOS propagations, the normalized residual follows the central Chi-Square distribution while for NLOS cases it is non-central. This study can reduce the CC by more than 90%.
基金the National Science Foundation of China (No.50745020).
文摘We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacement sensor based on the Michelson interference principle, a 3D platform based on vertical scanning, a measuring and control circuit, and an industrial control computer. It was a closed loop control system, which changed the traditional moving stylus scanning style into a moving platform scanning style. When the workpiece was measured, the lever of the displacement sensor returned to the balanced position in every sample interval according to the zero offset of the displacement sensor. The non-linear error caused by the rotation of the lever was, therefore, very small even if the measuring range was wide. The instrument can measure the roughness and the profile size of a curved surface.
基金supported by the National Science Foundation (No.CNS-0721951,IIS-0326505)the Air Force Office of Scientific Research(AFOSR) (No.FA9550-08-1-0260)+1 种基金the Texas Advanced Research Program (ARP) (No.14-748779)the Research I Foundation grant of IIT-Kanpur,and Department of Science and Technology,Government of India under Indo-Trento Program for Advanced Research
文摘Localization is one of the fundamental problems in wireless sensor networks (WSNs), since locations of the sensor nodes are critical to both network operations and most application level tasks. Although the GPS based localization schemes can be used to determine node locations within a few meters, the cost of GPS devices and non-availability of GPS signals in confined environments prevent their use in large scale sensor networks. There exists an extensive body of research that aims at obtaining locations as well as spatial relations of nodes in WSNs without requiring specialized hardware and/or employing only a limited number of anchors that are aware of their own locations. In this paper, we present a comprehensive survey on sensor localization in WSNs covering motivations, problem formulations, solution approaches and performance summary. Future research issues will also be discussed.
基金supported by the National Natural Science Foundation of China (60574022).
文摘A new distributed fusion method of radar/infrared (IR) tracking system based on separation and combination of the measurements is proposed by analyzing the influence of rate measurement. The rate information separated from the radar measurements together with measurements of IR form a pseudo vector of IR, and the corresponding filter is designed. The results indicate that the method not only makes a great improvement to the local tracker's performance, but also improves the global tracking precision efficiently.
基金financially supported by the National Natural Science Foundation of China(Grant No.51309215)
文摘Navigation is a critical requirement for the operation of Autonomous Underwater Vehicles(AUVs).To estimate the vehicle position,we present an algorithm using an extended Kalman filter(EKF) to integrate dead-reckoning position with acoustic ranges from multiple beacons pre-deployed in the operating environment.Owing to high latency,variable sound speed multipath transmissions and unreliability in acoustic measurements,outlier recognition techniques are proposed as well.The navigation algorithm has been tested by the recorded data of deep sea AUV during field operations in a variety of environments.Our results show the improved performance over prior techniques based on position computation.
基金Supported by the National Natural Science Foundation of China under Grant No 61036016the Beijing Higher Education Young Elite Teacher Project under Grant No YETP0086
文摘Wavelength 1064 nm is one of the most widely used laser wavelengths in industries and science. The high-precision measurement of the refractive index of optical materials at 1064 nm is significant for improving the optical design. We study the direct measurement of refractive index at 1064nm of lasers, including cMcium fluoride (CaF2), fused silica and zinc selenide (ZnSe), whose refractive indices cover a large range from 1.42847 to 2.48272. The measurement system is built based on the quasi-common-path Nd:YAG laser feedback interferometry. The thickness can be measured simultaneously with the refractive index. The results demonstrate that the system has absolute uncertainties of ~10-5 and ~10-4 mm in refractive index and thickness measurement, respectively.
基金the National Natural Science Foundation of China(Grant Nos.11927804 and 11873013)。
文摘A simple method for measuring grating groove density as well as its position and orientation is proposed based on the idea of ERT(Experimental Ray Tracing).Conventional methods only measure grating groove density with accuracy limited by its rotary stage and goniometer.The method proposed in the paper utilizes linear guides which could be calibrated to much higher accuracy.It is applicable to gratings of arbitrary surface profile or mosaic of a group of various gratings.Various measurement error sources are simulated by the Monte Carlo method and the results show high accuracy capability of grating parameters identification.A verification testing is performed.The accuracy dependency on main configuration parameters is evaluated.A method to expand measurement range by double wavelength is also discussed.
文摘Power generation using dielectric elastomer transducers is cheap, light, stackable, easy to install, and highly efficient. Also, since the dielectric elastomer transducer is an actuator developed into an artificial muscle, if the DE motor is further developed, it might be possibly be able to drive a vehicle. Efficient robot driving, various industrial machines and the use of dielectric elastomer sensors to optimize the driving may also help solve the above problems from the perspective of eco-driving. This paper describes the latest level of development of dielectric elastomers, their main problems and solutions to these problems, and their potential applications. The possibilities and concrete plans for building local global smart cities (including local generation power for local consumption), efficient transportation, and environmental monitoring systems utilizing dielectric elastomers are also discussed.
文摘Shoemaking is one of the areas where CAD/CAM application is rapidly increasing.This paper introduces an integrated computer aided shoemaking system including human foot measuring,last (wooden model)measuring,last CAD/CAM and pattern CAD/CAM.The project was supported by the 7th national economical 5 year plan.High technologies,suh as digital image processing,pattern rcognition,advanced geometrical modeling and a series of sophisticated equipments and devices are ap- plied in this integrated system.Parts of the system have become commercial products.
基金the funding support from the National Natural Science Foundation of China (51605449, 51675493 and 51705476)Shanxi “1331 Project” Key Subject Construction (1331KSC)
文摘Flexible pressure sensors have attracted great attention due to their potential in the wearable devices market and in particular in human-machine interactive interfaces.Pressure sensors with high sensitivity,wide measurement range,and low-cost are now highly desired for such practical applications.In the present investigation,an ultrasensitive pressure sensor with wide measurement range has been successfully fabricated.Carbon nanotubes(CNTs)(uniformly sprayed on the surface of paper)comprise the sensitivity material,while lithographed interdigital electrodes comprise the substrate.Due to the synergistic effects of CNT’s high specific surface area,paper’s porous structure,interdigital electrodes’efficient contact with CNT,our pressure sensor realizes a wide measurement range from 0 to 140 kPa and exhibits excellent stability through 15,000 cycles of testing.For the paper-based CNT film/interdigitated structure(PCI)pressure sensor,the connection area between the sensitive material and interdigital electrodes dominates in the lowpressure region,while internal change within the sensitive materials plays the leading role in the high-pressure region.Additionally,the PCI pressure sensor not only displays a high sensitivity of 2.72 kPa–1(up to 35 kPa)but also can detect low pressures,such as that exerted by a resting mung bean(about 8 Pa).When attached to the surface of a human body,the pressure sensor can monitor physiological signals,such as wrist movement,pulse beats,or movement of throat muscles.Furthermore,the pressure sensor array can identify the spatial pressure distribution,with promising applications in humanmachine interactive interfaces.
基金supported by the National "973" Program of China(No.2012CB315705)the National "863" Program of China(No.2011AA010306)+2 种基金the National Natural Science Foundation of China(Nos.61107058,61120106001,60932004,61001121,and 60837004)the Beijing Excellent Doctoral Thesis Project(No.YB20101001301)the Cooperation Project between the Province and Ministries(No.2011A090200025)
文摘A novel photonic-assisted approach to microwave frequency measurement is proposed and experimentally demonstrated. The proposed scheme is based on the frequency-to-power mapping with different transmis- sion responses. A polarizer is used in one output branch of a phase modulator to simultaneously implement phase modulation and intensity modulation. Owing to the complementary nature of the transmission re- sponses and the Mach-Zehnder interferometers (MZIs), this scheme theoretically provides high resolution and tunable measurement range. The measurement errors in the experimental results can be kept within 0.2 GHz over a freauencv ranee from 0.1 to 5.3 GHz.
基金Supported by the National Natural Science Foundation of China(71862026)the China Postdoctoral Science Foundation(2018T110209)+2 种基金the Natural Science Foundation of Inner Mongolia(2018MS07006)the“13th Five Year”Plan of Educational Science Research in Inner Mongolia(NGJGH2018016)the State Scholarship Fund of China Scholarship Council(20180815502)。
文摘DEA(data envelopment analysis) models can be divided into two groups: Radial DEA and non-radial DEA, and the latter has higher discriminatory power than the former. The range adjusted measure(RAM) is an effective and widely used non-radial DEA approach. However, to the best of our knowledge, there is no literature on the integer-valued super-efficiency RAM-DEA model,especially when undesirable outputs are included. We first propose an integer-valued RAM-DEA mode with undesirable outputs and then extend this model to an integer-valued super-efficiency RAM-DEA model with undesirable outputs. Compared with other DEA models, the two novel models have many advantages: 1) They are non-oriented and non-radial DEA models, which enable decision makers to simultaneously and non-proportionally improve inputs and outputs;2) They can handle integer-valued variables and undesirable outputs, so the results obtained are more reliable;3) The results can be easily obtained as it is based on linear programming;4) The integer-valued super-efficiency RAM-DEA model with undesirable outputs can be used to accurately rank efficient DMUs. The proposed models are applied to evaluate the efficiency of China’s regional transportation systems(RTSs) considering the number of transport accidents(an undesirable output). The results help decision makers improve the performance of inefficient RTSs and analyze the strengths of efficient RTSs.
基金supported in part by the National Key Research and Development Program of China(Grant No.2019YFB2004802)the National Natural Science Foundation of China(Grant Nos.62171414,52175554,52205608,62171415&62001431)+1 种基金the Fundamental Research Program of Shanxi Province(Grant Nos.20210302123059&20210302124610)the Program for the Innovative Talents of Higher Education Institutions of Shanxi。
文摘Flexible pressure sensors have broad application prospects,such as human motion monitoring and personalized recognition.However,their applicability is limited by complex structures,low output performance,low sensitivity,and narrow measurement range.In this study,we report a single-electrode spongy triboelectric sensor(SSTS)mainly composed of spongy composite multi-walled carbon nanotubes/polydimethylsiloxane(MWCNT/PDMS)film and conductive fabric,which can simultaneously generate contact electrification and electrostatic induction coupling in a single-electrode contact-separation mode.The SSTS combines the triboelectric effect,properties of doping material,and spongy porous structure(soft sugar as a sacrificial template).An SSTS with an MWCNT content of 10 wt%and a porosity of 64%exhibits high sensitivity,a wide measurement range,and excellent linearity.It also displays two sensitivity regions(slopes):1.324 V/kPa from 1.5 to 28 kPa in the low-pressure range and 0.096 V/kPa from 28 to 316.5 kPa in the high-pressure range,with linearities of 0.980 and 0.979,respectively.Furthermore,the SSTS delivers a high-performance output and high stability,thus enhancing the monitoring of hand pressure changes,human movement,personalized spatial recognition,and other detection tasks.This new strategy for human motion monitoring shows great potential in the healthcare fields,sports rehabilitation,and human-computer interactions.
基金This study was supported by the National Natural Science Foundation of China (Grant Nos. 61601253 and 6150127 1) and K. C. Wong Magna Fund in Ningbo University.
文摘The microring resonator has received increas- ing attention in the optical sensing application because of its micro-size, optical property, and high sensitivity. An additional waveguide is commonly used to change the output spectra in the early research on microring resonators. In this study, we proposed a nested microring resonator that doubles the free spectral range (FSR) compared with the conventional single microring. This structure improved the sensing property as the FSR in the filter output spectra could be considered as a measurement range in the microring sensor. Moreover, the parameters including the coupling coefficient of the three coupling sections, length of the U-bend waveguide, and effective index of a waveguide were tested and carefully selected to optimize the sensing properties. The relationship between these parameters and the output spectra was demonstrated. With linear sensitivity, the structure has a good potential in sensing application.
基金the National Natural Science Foundation of China (Grant Nos. 61137005 and 11474043) and the Ministry of Education of China (Grant No. DUT 14ZD211 and SRFDP 20120041110040).
文摘An optical fiber displacement sensor with a large measuring range for simultaneous displacement and temperature measurement is presented in this paper. We developed a specific transducer based on the piston and hydraumatic structure to realize a large displacement measurement, which combined the large measuring range and high precision into a single sensor system. The spectrum showed two reflection peaks used to compensate for cross-sensitivity in the displacement detection. This displacement sensor can linearly work in a large measuring displacement range greater than 45 mm with a high sensitivity of 0.036nm/mm. The sensor we reported can be developed for real-time displacement monitoring in many industrial environments such as the mechanical shape or liquid level monitoring.