The state of in situ stress is a crucial parameter in subsurface engineering,especially for critical projects like nuclear waste repository.As one of the two ISRM suggested methods,the overcoring(OC)method is widely u...The state of in situ stress is a crucial parameter in subsurface engineering,especially for critical projects like nuclear waste repository.As one of the two ISRM suggested methods,the overcoring(OC)method is widely used to estimate the full stress tensors in rocks by independent regression analysis of the data from each OC test.However,such customary independent analysis of individual OC tests,known as no pooling,is liable to yield unreliable test-specific stress estimates due to various uncertainty sources involved in the OC method.To address this problem,a practical and no-cost solution is considered by incorporating into OC data analysis additional information implied within adjacent OC tests,which are usually available in OC measurement campaigns.Hence,this paper presents a Bayesian partial pooling(hierarchical)model for combined analysis of adjacent OC tests.We performed five case studies using OC test data made at a nuclear waste repository research site of Sweden.The results demonstrate that partial pooling of adjacent OC tests indeed allows borrowing of information across adjacent tests,and yields improved stress tensor estimates with reduced uncertainties simultaneously for all individual tests than they are independently analysed as no pooling,particularly for those unreliable no pooling stress estimates.A further model comparison shows that the partial pooling model also gives better predictive performance,and thus confirms that the information borrowed across adjacent OC tests is relevant and effective.展开更多
Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress r...Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress relief approach,for indirectly measuring rock stress using optical techniques.The proposed method allows for the acquisition of full-field strain evolution on the borehole’s inner wall before and after disturbance,facilitating the determination of three-dimensional(3D)stress information at multiple points within a single borehole.The study focuses on presenting the method’s theoretical framework,laboratory validation results,and equipment design conception.The theoretical framework comprises three key components:the optical imaging method of the borehole wall,the digital image correlation(DIC)method,and the stress calculation procedure.Laboratory validation tests investigate strain field distribution on the borehole wall under varying stress conditions,with stress results derived from DIC strain data.Remarkably,the optical method demonstrates better measurement accuracy during the unloading stage compared to conventional strain gauge methods.At relatively high stress levels,the optical method demonstrates a relative error of less than 7%and an absolute error within 0.5 MPa.Furthermore,a comparative analysis between the optical method and the conventional contact resistance strain gauge method highlights the optical method’s enhanced accuracy and stability,particularly during the unloading stage.The proposed optical stress measurement device represents a pioneering effort in the application of DIC technology to rock engineering,highlighting its potential to advance stress measurement techniques in the field.展开更多
Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre...Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.展开更多
In situ stress measurement data was analyzed to estimate the temporal and spatial stress variations at shallow depths in the Longmenshan fault zone(LMSF),prior to and following the 2008 Wenchuan earthquake(WCEQ).Analy...In situ stress measurement data was analyzed to estimate the temporal and spatial stress variations at shallow depths in the Longmenshan fault zone(LMSF),prior to and following the 2008 Wenchuan earthquake(WCEQ).Analysis of the stress field related to fault strength and behavior is useful for understanding geodynamic processes and conducting hazard assessments.The shallow stress changes after the WCEQ show clear along-strike variations.Degrees of stress orientation rotations have a negative correlation with the horizontal principal stress ratios and the WCEQ apparently reduced the magnitude difference between horizontal principal stresses.Taking stress magnitudes and orientation distribution relative to the fault strike into account,we propose an intermediate-strength of LMSF,with a friction coefficient generally constrained between 0.35 and 0.6.In addition,high-pressure fluids in the fault zone reduce the effective normal stress and to a certain degree weaken the fault strength.The accumulated stress over a certain period following release of the WCEQ indicates the start of another earthquake cycle.The changing crustal stress field makes the LMSF stable or slipping optimally during geodynamic processes.The segmentation feature of the shallow crustal stress field in the LMSF may imply a different tectonic loading and seismic release processes along the fault.The southwestern section to the epicenter of the WCEQ favors the occurrence of future earthquakes,as highμm in a state of critical failure was present in this area,which indicates that the Wenchuan and Lushan earthquakes did not release the accumulated stress to a sufficient extent there.展开更多
Environmental contamination has been caused by petroleum-based polymeric materials in the melt deposition process.Nowadays biodegradable materials have been widely used in the fused deposition modeling(FDM)industry,su...Environmental contamination has been caused by petroleum-based polymeric materials in the melt deposition process.Nowadays biodegradable materials have been widely used in the fused deposition modeling(FDM)industry,such as polylactic acid(PLA).However,internal complex thermal stress and deformations in part caused by an uneven distribution of PLA filament deposition temperatures during FDM,which will seriously affect the geometric accuracy of the printed part.In order to reduce material waste and environmental pollution during the printing process,the accuracy of PLA part can be improved.Herein,numerical simulation was carried out to investigate the temperature field and stress field during the building and cooling process of cuboid specimens.The effects of printing path on the thermal stress and temperature field during the building process were mainly studied.The results show that the printing path has a significant effect on the stress distribution.The most uni-form stress distribution and the smallest deformation were obtained using the Zig Zag printing path.Finally,the residual stress during the cooling process was collected using strain gauges embedded at the mid-plane of the FDM built cuboid specimens.The simulation results are consistent with the experimental results.展开更多
The contemporary tectonic stress field in China is obtained on the basis of Chinese stress field database and Harvard CMT catalogue. Result of the inverted tectonic stresses shows that the maximum principal stress axi...The contemporary tectonic stress field in China is obtained on the basis of Chinese stress field database and Harvard CMT catalogue. Result of the inverted tectonic stresses shows that the maximum principal stress axis strikes nearly north-south direction in the west part of Tibet plateau, ENE direction in North China. In Central China, its strikes show a ra- diated pattern, i.e., NNE in north part and NNW in south part. The detailed stress field parameters of nearly whole China are given and can be used in geodynamic stress field simulation and earthquake prediction.展开更多
Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake ha...Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake hazard assessment. In-situ stresses were measured in three new boreholes by using overcoring with the piezomagnetic stress gauges for shallow depths and hydraulic fracturing for lower depths. The maximum horizontal stress in shallow depths (-20 m) is about 4.3 MPa, oriented N19°E, in the epicenter area at Yingxiu Town, about 9.7 MPa, oriented N51°W, at Baoxing County in the southwestern Longmenshan range, and about 2.6 MPa, oriented N39°E, near Kangding in the southernmost zone of the Longmenshan range. Hydraulic fracturing at borehole depths from 100 to 400 m shows a tendency towards increasing stress with depth. A comparison with the results measured before the Wenchuan earthquake along the Longmenshan zone and in the Tibetan Plateau demonstrates that the stress level remains relatively high in the southwestern segment of the Longmenshan range, and is still moderate in the epicenter zone. These results provide a key appraisal for future assessment of earthquake hazards of the Longmenshan fault zone and the aftershock occurrences of the Wenchuan earthquake.展开更多
The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic d...The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic displacement and the distribution functions of stress tensor around the Longmen Shan fault zone are calculated. The results show that the co-seismic maximum surface displacement is 4.9 m in the horizontal direction and 6.5 m in the vertical direction, which is almost consistent with the on-site survey and GPS observations. The co-seismic maximum horizontal stress in the hanging wall and footwall decreased sharply as the distance from the Longmen Shan fault zone increased. However, the vertical stress and minimum horizontal stress increased in the footwall and in some areas of the hanging wall. The study of the co-seismic displacement and stress was mainly focused on the long and narrow region along the Longmen Shan fault zone, which coincides with the distribution of the earthquake aftershocks. Therefore, the co-seismic stress only affects the aftershocks, and does not affect distant faults and seismic activities. The results are almost consistent with in situ stress measurements at the two sites before and after Wenchuan Ms8.0 earthquake. Along the fault plane, the co-seismic shear stress in the dip direction is larger than that in the strike direction, which indicates that the faulting mechanism of the Longmen Shan fault zone is a dominant thrust with minor strike-slipping. The results can be used as a reference value for future studies of earthquake mechanisms.展开更多
In-situ stress is an essential parameter for design and construction of most engineering projects that involve excavation in rocks. Progress in in-situ stress measurement from the 1950s in China is briefly introduced....In-situ stress is an essential parameter for design and construction of most engineering projects that involve excavation in rocks. Progress in in-situ stress measurement from the 1950s in China is briefly introduced. Stress relief by overcoring technique and hydraulic fracturing: technique are the two main techniques for in-situ stress measurement in China at present. To make them suitable for application at great depth and to increase their measuring reliability and accuracy, a series of techniques have been developed. Applications and achievements of in-situ stress measurement in Chinese rock engineering, including mining, geotechnical and hydropower engineering, and earthquake prediction, are introduced. Suggestions for further development of in-situ stress measurement are also proposed.展开更多
Borehole overcoring stress measurement with an improved hollow inclusion technique was carried out at 10 points on 3 levels in Jinchuan nickel mine which is situated in north-west of China. Through the measurement, 3-...Borehole overcoring stress measurement with an improved hollow inclusion technique was carried out at 10 points on 3 levels in Jinchuan nickel mine which is situated in north-west of China. Through the measurement, 3-D in situ stress state at the measuring points and distribution characteristics of the stress field in the mine were obtained. The stress state in Jinchuan mine is dominated by the horizontal tectonic stress field. The maximum principal stress is horizontal which is about twice the weight of the overburden and its orientation is approximately vertical to the regional tectonic line. The difference between two horizontal principal stresses is quite large which is an important reason to cause failure of underground excavations.展开更多
In order to solve the difficult conditions of soft rock,water-trickling and hard-maintain of main air-return roadway in Tarangaole Colliery,high pretensioned stress and intensive bolt-shotcrete support program was des...In order to solve the difficult conditions of soft rock,water-trickling and hard-maintain of main air-return roadway in Tarangaole Colliery,high pretensioned stress and intensive bolt-shotcrete support program was designed and mechanical property of shotcrete layer was specially monitored through utilizing a type of concrete stress meter with oscillating chord after the program was carried out.It was indicated that,due to rock pressure and support resistance,the interior of shotcrete layer would emerge diverse stresses in axial,radial and tangential directions.With time passing internal stresses in three directions,whose average values were-0.061,0.043 and 0.517 MPa respectively,fluctuated first and then tended to stability slowly.The axial and radial stresses were relatively smaller than tangential stress which was 11,12 times the two formers respectively.Along the section of roadway,axial and tangential stresses distributed symmetrically and increased gradually from the top of arch to the waist of wall,but reduced at the foot of wall.Radial stresses reduced from the top of arch to the waist of arch first,and then increased in the waist of wall.Axial stresses were tensile substantially,except for stresses in arch vault tending to compressive,but all the radial stresses were compressive.Nevertheless,tangential stresses in the wall were compressive and tangential stresses in the arch were tensile.During the period of roadway excavating,the stress of shotcrete layer was less than its ultimate bearing capacity,with no significant stress concentration.At the end of this article,some suggests are given to shotcrete support design.展开更多
In order to obtain the distribution rules of in situ stress and mining-induced stress of Beiminghe Iron Mine, the stress relief method by overcoring was used to measure the in situ stress, and the MC type bore-hole st...In order to obtain the distribution rules of in situ stress and mining-induced stress of Beiminghe Iron Mine, the stress relief method by overcoring was used to measure the in situ stress, and the MC type bore-hole stress gauge was adopted to measure the mining-induced stress. In the in situ stress measuring, the technique of improved hollow inclusion cells was adopted, which can realize complete temperature compensation. Based on the measuring results, the distribution model of in situ stress was established and analyzed. The in situ stress measuring result shows that the maximum horizontal stress is 1.75-2.45 times of vertical stress and almost 1.83 times of the minimum horizontal stress in this mineral field. And the mining-induced stress measuring result shows that, according to the magnitude of front abutment pressure the stress region can be separated into stress-relaxed area, stress- concentrated area and initial stress area. At the -50 m mining level of this mine, the range of stress-relaxed area is 0-3 m before mining face; the range of stress-concentrated area is 3-55 m before mining face, and the maximum mining-induced stress is 16.5-17.5 MPa, which is 15-20 m from the mining face. The coefficient of stress concentration is 1.85.展开更多
With the research development of the magnesium alloys,the deformation or stress corrosion induced by residual stress(RS)attracted extensive interests in industry and research efforts extensive.However,there are relati...With the research development of the magnesium alloys,the deformation or stress corrosion induced by residual stress(RS)attracted extensive interests in industry and research efforts extensive.However,there are relatively few studies on the RS of magnesium alloys in the world.The generation cause of RS in magnesium alloys was analyzed at first.Several methods of determinate the RS,including destructive methods(drilling hole,crack compliance,layer exfoliation etc.)and non-destructive methods(X-ray Diffraction,Neutron Diffraction,Short Wavelength X-ray Diffraction)were summarized.The factors that influence the measuring accuracy of XRD method were emphasized.The research trends of RS in magnesium alloys were put forward.展开更多
Crustal tectonic activities are essentially the consequences of the accumulation and release of in situ stress. Therefore, studying the stress state near active faults is important for understanding crustal dynamics a...Crustal tectonic activities are essentially the consequences of the accumulation and release of in situ stress. Therefore, studying the stress state near active faults is important for understanding crustal dynamics and earthquake occurrences. In this paper, using in situ stress measurement results obtained by hydraulic fracturing in the vicinity of the Longmenshan fault zone before and after the Wenchuan Ms 8.0 earthquake and finite element modeling, the variation of stress state before and after the Wenchuan M. 8.0 earthquake is investigated. The results show that the shear stress, which is proportional to the difference between principal stresses, increases with depth and distance from the active fault in the calm period or after the earthquakes, and tends to approach to the regional stress level outside the zone influenced by the fault. This distribution appears to gradually reverse with time and the change of fault properties such as frictional strength. With an increase in friction coefficient, low stress areas are reduced and areas with increased stress accumulation are more obvious near the fault. In sections of the fault with high frictional strengths, in situ stress clearly increases in the fault. Stress accumulates more rapidly in the fault zone relative to the surrounding areas, eventually leading to a stress field that peaks at the fault zone. Such a reversal in the stress field between the fault zone and surrounding areas in the magnitude of the stress field is a potential indicator for the occurrence of strong earthquakes.展开更多
In-situ stress measurement using the hydraulic fracturing technique was made at Wanfu Coal Mine in Shandong Province, China. To solve problems caused by great measuring depth and extra thick overburden soil layers in ...In-situ stress measurement using the hydraulic fracturing technique was made at Wanfu Coal Mine in Shandong Province, China. To solve problems caused by great measuring depth and extra thick overburden soil layers in the mine, a series of improved techniques were developed for the traditional hydraulic fracturing technique and equipment to increase their pressure-enduring ability and to ensure safe and flexible removal of the sealing packers with other experimental apparatus. Successful in-situ stress measurement at 37 points within 7 boreholes, which were mostly over 1000 m deep, was completed. Through the measurement, detailed information of in-situ stress state has been provided for mining design of the mine. The improved hydraulic fracturing technique and equipment also provide reliable tools for in-situ stress measurement at great depth of other mines.展开更多
The effect of vibratory stress relief (VSR) is usually evaluated with the indirect method of observing the change of amplitude frequency response characteristics of structures. A new kind of evaluating method of VSR...The effect of vibratory stress relief (VSR) is usually evaluated with the indirect method of observing the change of amplitude frequency response characteristics of structures. A new kind of evaluating method of VSR based on the ultrasonic time-of-arrival method (UTM), which can obtain the residual stress directly through measuring the propagation time of ultrasonic wave in the material, is presented. At first, the principle of the measuring method of residual stress based on UTM is analyzed. Then the measuring system of the method is described, which is in virtue of ultrasonic flaw detector and high-sampling-rate digital oscillograph. And a set of calibration system that contains a piece of standard specimen is also introduced. Experimental results prove the relation between the residual stress and the propagation time of ultrasonic in workpieces. Finally, the measuring and calibration systems are applied in evaluating the effect of VSR. The final test results show that the method is effective.展开更多
With the rapid increase of energy demand and the increasingly highlighted environmental problems, clean, safe and widely distributed geothermal resources have become a hot spot for renewable resources development. The...With the rapid increase of energy demand and the increasingly highlighted environmental problems, clean, safe and widely distributed geothermal resources have become a hot spot for renewable resources development. The state of in-situ stress is a major control parameter for multiple links including well location, fracture inspiration and reservoir assessment, so how to determine the accurate state of in-situ stress in the deep thermal reservoir becomes a core problem drawing widely attention and urgent to be solved. Based on features of hot dry rock reservoir in terms of temperature and pressure and the comparison analysis, this article proposes the method of Anelastic Strain Recovery(ASR) as an effective method for determining the state of in-situ stress in the area with HDR resources distributed and explains the availability of ASR method by application examples.展开更多
The global wall shear stress measurement tech- nique using shear-sensitive liquid crystal (SSLC) is extended to wind tunnel measurements. Simple and common every- day equipment is used in the measurement; in particu...The global wall shear stress measurement tech- nique using shear-sensitive liquid crystal (SSLC) is extended to wind tunnel measurements. Simple and common every- day equipment is used in the measurement; in particular a tungsten-halogen light bulb provides illumination and a saturation of SSLC coating color change with time is found. Spatial wall shear stress distributions of several typical flows are obtained using this technique, including wall-jet flow, vortex flow generated by a delta wing and junction flow behind a thin cylinder, although the magnitudes are not fully calibrated. The results demonstrate that SSLC technique can be extended to wind tunnel measurements with no complicated facilities used.展开更多
Reliable information of in--situ stress state is necessary for the design andconstruction of most important rock projects. As most rock projects are getting deeper and deeper,traditional techniques of in--situ stress ...Reliable information of in--situ stress state is necessary for the design andconstruction of most important rock projects. As most rock projects are getting deeper and deeper,traditional techniques of in--situ stress measurement are not very suitable. The current techniquesof in--situ stress measurement and their insufficiency for use at great depth are analyzed. Somebasic ideas of the development of new techniques and the improvement of current techniques for useat great depth are provided.展开更多
A set of absorption curves was priorly prepared on transparent films to fit the background and peak intensities in continuous scanning X-ray stress measurement.It may be better to correct both background and absorptio...A set of absorption curves was priorly prepared on transparent films to fit the background and peak intensities in continuous scanning X-ray stress measurement.It may be better to correct both background and absorption of pure diffraction intensity.Experimental results revealed this to be a reliable correction method.展开更多
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2023A1515011244).
文摘The state of in situ stress is a crucial parameter in subsurface engineering,especially for critical projects like nuclear waste repository.As one of the two ISRM suggested methods,the overcoring(OC)method is widely used to estimate the full stress tensors in rocks by independent regression analysis of the data from each OC test.However,such customary independent analysis of individual OC tests,known as no pooling,is liable to yield unreliable test-specific stress estimates due to various uncertainty sources involved in the OC method.To address this problem,a practical and no-cost solution is considered by incorporating into OC data analysis additional information implied within adjacent OC tests,which are usually available in OC measurement campaigns.Hence,this paper presents a Bayesian partial pooling(hierarchical)model for combined analysis of adjacent OC tests.We performed five case studies using OC test data made at a nuclear waste repository research site of Sweden.The results demonstrate that partial pooling of adjacent OC tests indeed allows borrowing of information across adjacent tests,and yields improved stress tensor estimates with reduced uncertainties simultaneously for all individual tests than they are independently analysed as no pooling,particularly for those unreliable no pooling stress estimates.A further model comparison shows that the partial pooling model also gives better predictive performance,and thus confirms that the information borrowed across adjacent OC tests is relevant and effective.
基金funding support from the National Natural Science Foundation of China(Grant Nos.52125903 and 52209149).
文摘Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress relief approach,for indirectly measuring rock stress using optical techniques.The proposed method allows for the acquisition of full-field strain evolution on the borehole’s inner wall before and after disturbance,facilitating the determination of three-dimensional(3D)stress information at multiple points within a single borehole.The study focuses on presenting the method’s theoretical framework,laboratory validation results,and equipment design conception.The theoretical framework comprises three key components:the optical imaging method of the borehole wall,the digital image correlation(DIC)method,and the stress calculation procedure.Laboratory validation tests investigate strain field distribution on the borehole wall under varying stress conditions,with stress results derived from DIC strain data.Remarkably,the optical method demonstrates better measurement accuracy during the unloading stage compared to conventional strain gauge methods.At relatively high stress levels,the optical method demonstrates a relative error of less than 7%and an absolute error within 0.5 MPa.Furthermore,a comparative analysis between the optical method and the conventional contact resistance strain gauge method highlights the optical method’s enhanced accuracy and stability,particularly during the unloading stage.The proposed optical stress measurement device represents a pioneering effort in the application of DIC technology to rock engineering,highlighting its potential to advance stress measurement techniques in the field.
基金financially supported by the National Natural Science Foundation of China(No.52204084)the Open Research Fund of the State Key Laboratory of Coal Resources and safe Mining,CUMT,China(No.SKLCRSM 23KF004)+3 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China(No.FRF-IDRY-GD22-002)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,China(No.QNXM20220009)the National Key R&D Program of China(Nos.2022YFC2905600 and 2022 YFC3004601)the Science,Technology&Innovation Project of Xiongan New Area,China(No.2023XAGG0061)。
文摘Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.
基金supported by the National Natural Science Foundation of China(Grant No.41702351)the China Geological Survey Project(Grant Nos.DD20211376,DD20221816)。
文摘In situ stress measurement data was analyzed to estimate the temporal and spatial stress variations at shallow depths in the Longmenshan fault zone(LMSF),prior to and following the 2008 Wenchuan earthquake(WCEQ).Analysis of the stress field related to fault strength and behavior is useful for understanding geodynamic processes and conducting hazard assessments.The shallow stress changes after the WCEQ show clear along-strike variations.Degrees of stress orientation rotations have a negative correlation with the horizontal principal stress ratios and the WCEQ apparently reduced the magnitude difference between horizontal principal stresses.Taking stress magnitudes and orientation distribution relative to the fault strike into account,we propose an intermediate-strength of LMSF,with a friction coefficient generally constrained between 0.35 and 0.6.In addition,high-pressure fluids in the fault zone reduce the effective normal stress and to a certain degree weaken the fault strength.The accumulated stress over a certain period following release of the WCEQ indicates the start of another earthquake cycle.The changing crustal stress field makes the LMSF stable or slipping optimally during geodynamic processes.The segmentation feature of the shallow crustal stress field in the LMSF may imply a different tectonic loading and seismic release processes along the fault.The southwestern section to the epicenter of the WCEQ favors the occurrence of future earthquakes,as highμm in a state of critical failure was present in this area,which indicates that the Wenchuan and Lushan earthquakes did not release the accumulated stress to a sufficient extent there.
基金funded by Shanxi Province Technology Innovation Guidance Special Project(2020QFY03-05)Shanxi Province Printing and Packaging Key Laboratory Project(16JS081).
文摘Environmental contamination has been caused by petroleum-based polymeric materials in the melt deposition process.Nowadays biodegradable materials have been widely used in the fused deposition modeling(FDM)industry,such as polylactic acid(PLA).However,internal complex thermal stress and deformations in part caused by an uneven distribution of PLA filament deposition temperatures during FDM,which will seriously affect the geometric accuracy of the printed part.In order to reduce material waste and environmental pollution during the printing process,the accuracy of PLA part can be improved.Herein,numerical simulation was carried out to investigate the temperature field and stress field during the building and cooling process of cuboid specimens.The effects of printing path on the thermal stress and temperature field during the building process were mainly studied.The results show that the printing path has a significant effect on the stress distribution.The most uni-form stress distribution and the smallest deformation were obtained using the Zig Zag printing path.Finally,the residual stress during the cooling process was collected using strain gauges embedded at the mid-plane of the FDM built cuboid specimens.The simulation results are consistent with the experimental results.
基金supported by the National Natural Science Foundation of China (40874022)Public Utility Research Project (200808053)973 program (2008CB425703)
文摘The contemporary tectonic stress field in China is obtained on the basis of Chinese stress field database and Harvard CMT catalogue. Result of the inverted tectonic stresses shows that the maximum principal stress axis strikes nearly north-south direction in the west part of Tibet plateau, ENE direction in North China. In Central China, its strikes show a ra- diated pattern, i.e., NNE in north part and NNW in south part. The detailed stress field parameters of nearly whole China are given and can be used in geodynamic stress field simulation and earthquake prediction.
基金the auspice of National Key Basic Project(973)(granted No.2008CB425702)National Science and Technology Project(granted No.SinoProbe-06)
文摘Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake hazard assessment. In-situ stresses were measured in three new boreholes by using overcoring with the piezomagnetic stress gauges for shallow depths and hydraulic fracturing for lower depths. The maximum horizontal stress in shallow depths (-20 m) is about 4.3 MPa, oriented N19°E, in the epicenter area at Yingxiu Town, about 9.7 MPa, oriented N51°W, at Baoxing County in the southwestern Longmenshan range, and about 2.6 MPa, oriented N39°E, near Kangding in the southernmost zone of the Longmenshan range. Hydraulic fracturing at borehole depths from 100 to 400 m shows a tendency towards increasing stress with depth. A comparison with the results measured before the Wenchuan earthquake along the Longmenshan zone and in the Tibetan Plateau demonstrates that the stress level remains relatively high in the southwestern segment of the Longmenshan range, and is still moderate in the epicenter zone. These results provide a key appraisal for future assessment of earthquake hazards of the Longmenshan fault zone and the aftershock occurrences of the Wenchuan earthquake.
基金supported by the Sinoprobe Deep Exploration in China(SinoProbe-07)research funds of the Institute of Geomechanics,Chinese Academy of Geological Sciences(Grant No.DZLXJK201105)National Basic Research Program of China(973 Program)(Grant No.2008CB425702)
文摘The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic displacement and the distribution functions of stress tensor around the Longmen Shan fault zone are calculated. The results show that the co-seismic maximum surface displacement is 4.9 m in the horizontal direction and 6.5 m in the vertical direction, which is almost consistent with the on-site survey and GPS observations. The co-seismic maximum horizontal stress in the hanging wall and footwall decreased sharply as the distance from the Longmen Shan fault zone increased. However, the vertical stress and minimum horizontal stress increased in the footwall and in some areas of the hanging wall. The study of the co-seismic displacement and stress was mainly focused on the long and narrow region along the Longmen Shan fault zone, which coincides with the distribution of the earthquake aftershocks. Therefore, the co-seismic stress only affects the aftershocks, and does not affect distant faults and seismic activities. The results are almost consistent with in situ stress measurements at the two sites before and after Wenchuan Ms8.0 earthquake. Along the fault plane, the co-seismic shear stress in the dip direction is larger than that in the strike direction, which indicates that the faulting mechanism of the Longmen Shan fault zone is a dominant thrust with minor strike-slipping. The results can be used as a reference value for future studies of earthquake mechanisms.
文摘In-situ stress is an essential parameter for design and construction of most engineering projects that involve excavation in rocks. Progress in in-situ stress measurement from the 1950s in China is briefly introduced. Stress relief by overcoring technique and hydraulic fracturing: technique are the two main techniques for in-situ stress measurement in China at present. To make them suitable for application at great depth and to increase their measuring reliability and accuracy, a series of techniques have been developed. Applications and achievements of in-situ stress measurement in Chinese rock engineering, including mining, geotechnical and hydropower engineering, and earthquake prediction, are introduced. Suggestions for further development of in-situ stress measurement are also proposed.
文摘Borehole overcoring stress measurement with an improved hollow inclusion technique was carried out at 10 points on 3 levels in Jinchuan nickel mine which is situated in north-west of China. Through the measurement, 3-D in situ stress state at the measuring points and distribution characteristics of the stress field in the mine were obtained. The stress state in Jinchuan mine is dominated by the horizontal tectonic stress field. The maximum principal stress is horizontal which is about twice the weight of the overburden and its orientation is approximately vertical to the regional tectonic line. The difference between two horizontal principal stresses is quite large which is an important reason to cause failure of underground excavations.
文摘In order to solve the difficult conditions of soft rock,water-trickling and hard-maintain of main air-return roadway in Tarangaole Colliery,high pretensioned stress and intensive bolt-shotcrete support program was designed and mechanical property of shotcrete layer was specially monitored through utilizing a type of concrete stress meter with oscillating chord after the program was carried out.It was indicated that,due to rock pressure and support resistance,the interior of shotcrete layer would emerge diverse stresses in axial,radial and tangential directions.With time passing internal stresses in three directions,whose average values were-0.061,0.043 and 0.517 MPa respectively,fluctuated first and then tended to stability slowly.The axial and radial stresses were relatively smaller than tangential stress which was 11,12 times the two formers respectively.Along the section of roadway,axial and tangential stresses distributed symmetrically and increased gradually from the top of arch to the waist of wall,but reduced at the foot of wall.Radial stresses reduced from the top of arch to the waist of arch first,and then increased in the waist of wall.Axial stresses were tensile substantially,except for stresses in arch vault tending to compressive,but all the radial stresses were compressive.Nevertheless,tangential stresses in the wall were compressive and tangential stresses in the arch were tensile.During the period of roadway excavating,the stress of shotcrete layer was less than its ultimate bearing capacity,with no significant stress concentration.At the end of this article,some suggests are given to shotcrete support design.
基金Projects(10702072, 10632100) supported by the National Nature Science Foundation of China
文摘In order to obtain the distribution rules of in situ stress and mining-induced stress of Beiminghe Iron Mine, the stress relief method by overcoring was used to measure the in situ stress, and the MC type bore-hole stress gauge was adopted to measure the mining-induced stress. In the in situ stress measuring, the technique of improved hollow inclusion cells was adopted, which can realize complete temperature compensation. Based on the measuring results, the distribution model of in situ stress was established and analyzed. The in situ stress measuring result shows that the maximum horizontal stress is 1.75-2.45 times of vertical stress and almost 1.83 times of the minimum horizontal stress in this mineral field. And the mining-induced stress measuring result shows that, according to the magnitude of front abutment pressure the stress region can be separated into stress-relaxed area, stress- concentrated area and initial stress area. At the -50 m mining level of this mine, the range of stress-relaxed area is 0-3 m before mining face; the range of stress-concentrated area is 3-55 m before mining face, and the maximum mining-induced stress is 16.5-17.5 MPa, which is 15-20 m from the mining face. The coefficient of stress concentration is 1.85.
基金supported by Ministry of Science and Tech-nology of China(2016YFB0301105-2).
文摘With the research development of the magnesium alloys,the deformation or stress corrosion induced by residual stress(RS)attracted extensive interests in industry and research efforts extensive.However,there are relatively few studies on the RS of magnesium alloys in the world.The generation cause of RS in magnesium alloys was analyzed at first.Several methods of determinate the RS,including destructive methods(drilling hole,crack compliance,layer exfoliation etc.)and non-destructive methods(X-ray Diffraction,Neutron Diffraction,Short Wavelength X-ray Diffraction)were summarized.The factors that influence the measuring accuracy of XRD method were emphasized.The research trends of RS in magnesium alloys were put forward.
基金supported by the research funds of the Institute of Geomechanics,Chinese Academy of Geological Science(Grant No.DZLXJK201404)the Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period(Grant No.2012BAK19B03–3)
文摘Crustal tectonic activities are essentially the consequences of the accumulation and release of in situ stress. Therefore, studying the stress state near active faults is important for understanding crustal dynamics and earthquake occurrences. In this paper, using in situ stress measurement results obtained by hydraulic fracturing in the vicinity of the Longmenshan fault zone before and after the Wenchuan Ms 8.0 earthquake and finite element modeling, the variation of stress state before and after the Wenchuan M. 8.0 earthquake is investigated. The results show that the shear stress, which is proportional to the difference between principal stresses, increases with depth and distance from the active fault in the calm period or after the earthquakes, and tends to approach to the regional stress level outside the zone influenced by the fault. This distribution appears to gradually reverse with time and the change of fault properties such as frictional strength. With an increase in friction coefficient, low stress areas are reduced and areas with increased stress accumulation are more obvious near the fault. In sections of the fault with high frictional strengths, in situ stress clearly increases in the fault. Stress accumulates more rapidly in the fault zone relative to the surrounding areas, eventually leading to a stress field that peaks at the fault zone. Such a reversal in the stress field between the fault zone and surrounding areas in the magnitude of the stress field is a potential indicator for the occurrence of strong earthquakes.
基金supported by the National Natural Science Foundation of China (No. 50490271)
文摘In-situ stress measurement using the hydraulic fracturing technique was made at Wanfu Coal Mine in Shandong Province, China. To solve problems caused by great measuring depth and extra thick overburden soil layers in the mine, a series of improved techniques were developed for the traditional hydraulic fracturing technique and equipment to increase their pressure-enduring ability and to ensure safe and flexible removal of the sealing packers with other experimental apparatus. Successful in-situ stress measurement at 37 points within 7 boreholes, which were mostly over 1000 m deep, was completed. Through the measurement, detailed information of in-situ stress state has been provided for mining design of the mine. The improved hydraulic fracturing technique and equipment also provide reliable tools for in-situ stress measurement at great depth of other mines.
基金This project is supported by National Natural Science Foundation of China(No.50305036).
文摘The effect of vibratory stress relief (VSR) is usually evaluated with the indirect method of observing the change of amplitude frequency response characteristics of structures. A new kind of evaluating method of VSR based on the ultrasonic time-of-arrival method (UTM), which can obtain the residual stress directly through measuring the propagation time of ultrasonic wave in the material, is presented. At first, the principle of the measuring method of residual stress based on UTM is analyzed. Then the measuring system of the method is described, which is in virtue of ultrasonic flaw detector and high-sampling-rate digital oscillograph. And a set of calibration system that contains a piece of standard specimen is also introduced. Experimental results prove the relation between the residual stress and the propagation time of ultrasonic in workpieces. Finally, the measuring and calibration systems are applied in evaluating the effect of VSR. The final test results show that the method is effective.
基金founded by Project of National Natural Science Foundation of China “Study on the Anelastic Strain Recovery Compliance in the In-situ Stress Measurement by ASR Method”, No 41404080the Project of Geological Survey “Survey on the In-situ Stress Field in Southern China”
文摘With the rapid increase of energy demand and the increasingly highlighted environmental problems, clean, safe and widely distributed geothermal resources have become a hot spot for renewable resources development. The state of in-situ stress is a major control parameter for multiple links including well location, fracture inspiration and reservoir assessment, so how to determine the accurate state of in-situ stress in the deep thermal reservoir becomes a core problem drawing widely attention and urgent to be solved. Based on features of hot dry rock reservoir in terms of temperature and pressure and the comparison analysis, this article proposes the method of Anelastic Strain Recovery(ASR) as an effective method for determining the state of in-situ stress in the area with HDR resources distributed and explains the availability of ASR method by application examples.
基金the Doctorate Creation Foundation of Northwestern Polytechnical University (CX200902)
文摘The global wall shear stress measurement tech- nique using shear-sensitive liquid crystal (SSLC) is extended to wind tunnel measurements. Simple and common every- day equipment is used in the measurement; in particular a tungsten-halogen light bulb provides illumination and a saturation of SSLC coating color change with time is found. Spatial wall shear stress distributions of several typical flows are obtained using this technique, including wall-jet flow, vortex flow generated by a delta wing and junction flow behind a thin cylinder, although the magnitudes are not fully calibrated. The results demonstrate that SSLC technique can be extended to wind tunnel measurements with no complicated facilities used.
文摘Reliable information of in--situ stress state is necessary for the design andconstruction of most important rock projects. As most rock projects are getting deeper and deeper,traditional techniques of in--situ stress measurement are not very suitable. The current techniquesof in--situ stress measurement and their insufficiency for use at great depth are analyzed. Somebasic ideas of the development of new techniques and the improvement of current techniques for useat great depth are provided.
文摘A set of absorption curves was priorly prepared on transparent films to fit the background and peak intensities in continuous scanning X-ray stress measurement.It may be better to correct both background and absorption of pure diffraction intensity.Experimental results revealed this to be a reliable correction method.