A conoscopic holography-based 3D measurement system for analyzing the defects on the surface of steel plates was introduced in this paper. The hardware, which is automated through software, performs sampling of the st...A conoscopic holography-based 3D measurement system for analyzing the defects on the surface of steel plates was introduced in this paper. The hardware, which is automated through software, performs sampling of the steel plate surface. Through the software interface,point-cloud data of the steel plate surface are obtained and reconstructed to form a 3D image of the steel plate surface. The software allows automatic analysis of steel plate surface detects through identification of the bulges and depressions. In addition, the software can also automatically calculate the defect information ,such as the deepest point, volume, opening area, opening length, and so on, thereby determining the defect size. The results determined by this 3D measurement system were found to be in good agreement with the actual values.展开更多
We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacem...We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacement sensor based on the Michelson interference principle, a 3D platform based on vertical scanning, a measuring and control circuit, and an industrial control computer. It was a closed loop control system, which changed the traditional moving stylus scanning style into a moving platform scanning style. When the workpiece was measured, the lever of the displacement sensor returned to the balanced position in every sample interval according to the zero offset of the displacement sensor. The non-linear error caused by the rotation of the lever was, therefore, very small even if the measuring range was wide. The instrument can measure the roughness and the profile size of a curved surface.展开更多
The measurement of the surface quality and the profile preciseness is major issues in many industrial branches such that the surface quality of semi products directly affects the subsequent production steps.Although,t...The measurement of the surface quality and the profile preciseness is major issues in many industrial branches such that the surface quality of semi products directly affects the subsequent production steps.Although,there are many ways to obtain required data,the hardware necessary for the measurements such as 2D or 3D scanners,depending on the problem’s complexity,is too expensive.Therefore,in this paper,what we put forward as a novelty is an algorithm which is verified on the model of simple 3D scanner on the image processing basis with the resolution of 0.1 mm.There are many ways to scan surface profile;however,the image processing currently is the most trending topic in industry automation.Most importantly,in order to obtain surface images,standard high resolution reflex camera is used and thus the post processing could be realized with MatLab as the software environment.Therefore,this solution is an alternative to the expensive scanners,and single-purpose devices could be extended by many additional functions.展开更多
To realize the automation of fashion industry measuring,designing and manufacturing, the auto-measurement of 3D size of human body is of great importance. The auto measurement system of 3D human body based on Charge C...To realize the automation of fashion industry measuring,designing and manufacturing, the auto-measurement of 3D size of human body is of great importance. The auto measurement system of 3D human body based on Charge Coupled Devices (CCD) and infrared sensors is presented in this paper. The system can measure the bare size of human body that excludes the effect of clothing quickly and accurately.展开更多
The formation mechanisms and processes of geochemical anomalies used as proxies in surface geochemistry exploration (SGE) have not been well understood. Previous studies cannot realize 3D measurement of microseeping...The formation mechanisms and processes of geochemical anomalies used as proxies in surface geochemistry exploration (SGE) have not been well understood. Previous studies cannot realize 3D measurement of microseeping hydrocarbons from reservoirs to the surface, which made it difficult to understand the features and pathways of deep hydrocarbon microseepages. Understanding the processes of hydrocarbon microseepages will contribute to the acceptance and effectiveness of surface geochemistry. Based on a simplified geological model of hydrocarbon microseepages, including hydrocarbon reservoir, direct caprock, overlying strata and Quaternary sediments, this work established a 3D experimental system to simulate the mechanisms and processes of deep hydrocarbon microseepes extending to the surface. The dispersive halos of microseeping hydrocarbons in the subsurface were adequately described by using this 3D experimental system. Results indicate that different migration patterns of hydrocarbons above the point gas source within the simulated caprock and overlying strata can be reflected by the ratio of i-butane to n-butane (i-C4/n-C4), which follow diffusion and infiltration (buoyancy) mechanisms. This is not the case for vertical measurement lines far from the point gas source. A vertical gas flow in the form of a plume was found during hydrocarbon microseepage. For sampling methods, the high-density grid sampling is favorable for delineating prospecting targets. Hydrocarbon infiltration or buoyancy flow occurs in the zones of infiltration clusters, coupling with a diffusion mechanism at the top of the water table and forming surface geochemical anomalies. These results are significant in understanding hydrocarbon microseepage and interpreting SGE data.展开更多
Topology optimization of continuum structures with design-dependent loads has long been a challenge. In this paper, the topology optimization of 3D structures subjected to design-dependent loads is investigated. A bou...Topology optimization of continuum structures with design-dependent loads has long been a challenge. In this paper, the topology optimization of 3D structures subjected to design-dependent loads is investigated. A boundary search scheme is proposed for 3D problems, by means of which the load surface can be identified effectively and efficiently, and the difficulties arising in other approaches can be overcome. The load surfaces are made up of the boundaries of finite elements and the loads can be directly applied to corresponding element nodes, which leads to great convenience in the application of this method. Finally, the effectiveness and efficiency of the proposed method is validated by several numerical examples.展开更多
A 3- D free surface flow in open channels based on the Reynolds equations with the k-ε turbulence closure model is presented in this paper. Insted of the 'rigid lid' approximation, the solution of the free su...A 3- D free surface flow in open channels based on the Reynolds equations with the k-ε turbulence closure model is presented in this paper. Insted of the 'rigid lid' approximation, the solution of the free surface equation is implemented in the velocity-pressure iterative procedure on the basis of the conventional SIMPLE method. This model was used to compute the flow in rectangular channels with trenches dredged across the bottom. The velocity, eddy viscosity coefficient, turbulent shear stress, turbulent kinetic energy and elevation of the free surface can be obtained. The computed results are in good agreement with previous experimental data.展开更多
This paper presents a complete system for scanning the geometry and texture of a large 3D object, then the automatic registration is performed to obtain a whole realistic 3D model. This system is composed of one line ...This paper presents a complete system for scanning the geometry and texture of a large 3D object, then the automatic registration is performed to obtain a whole realistic 3D model. This system is composed of one line strip laser and one color CCD camera. The scanned object is pictured twice by a color CCD camera. First, the texture of the scanned object is taken by a color CCD camera. Then the 3D information of the scanned object is obtained from laser plane equations. This paper presents a practical way to implement the three dimensional measuring method and the automatic registration of a large 3D object and a pretty good result is obtained after experiment verification.展开更多
Direct current measurements at the mooring station M southwest of Yonakuni-jima are carried out from May 18 to June 1, 1996. The Observed Kuroshio Current at 290 and 594 m depths of the mooring station M is quite stea...Direct current measurements at the mooring station M southwest of Yonakuni-jima are carried out from May 18 to June 1, 1996. The Observed Kuroshio Current at 290 and 594 m depths of the mooring station M is quite steady ddring the pened of Observation. The rotary spectral estimates of the current data by the maximum entropy method show that there are prominent diurnal and semidiurnal spectral peaks. The semidiurnal tide is predominant at 290 m depth while there is the current fluctuation with the inertial period except for the tidal oscillation at 594 m depth. There are also peaks at the pened of 4-7 d. There is a significant coherence between two time series of currents at 290 and 594 m depths in the pened range of 3 - 5 d. The Japan Meteorological Agency (JMA) wind data during the same period as the oceanic measurement are used in comparison with the current meter data. Rotary spectral estimates for the wind data show significant peaks at the period of 3 - 5 d. It is concluded from the cross spectra between the wind and the current that the current fluctuation of 3 - 5 d period at 290 m depth response to the wind fluctuation of the same periods with time lags smaller than 1 d.展开更多
A bionic experimental platform was designed for the purpose of investigating time accurate three-dimensional flow field, using digital particle image velocimetry (DSPIV). The wake behind the flapping trail of a robo...A bionic experimental platform was designed for the purpose of investigating time accurate three-dimensional flow field, using digital particle image velocimetry (DSPIV). The wake behind the flapping trail of a robotic fish model was studied at high spatial resolution. The study was performed in a water channel. A robot fish model was designed and built. The model was fixed onto a rigid support frame- work using a cable-supporting method, with twelve stretched wires. The entire tail of the model can perform prescribed motions in two degrees of freedom, mainly in carangiform mode, by driving its afterbody and lunate caudal fin respectively. The DSPIV system was set up to operate in a trans- lational manner, measuring velocity field in a series of parallel slices. Phase locked measurements were repeated for a number of runs, allowing reconstruction of phase average flow field. Vortex structures with phase history of the wake were obtained. The study reveals some new and complex three-dimensional flow structures in the wake of the fish, including "reverse hairpin vortex" and "reverse Karman S-H vortex rings", allowing insight into physics of this complex flow.展开更多
Acquisition of physical data with high precision is a key step in reverse engineering (RE). It is an important stimulative for the progress of reverse engineering with which various digitizing devices are invent ed,...Acquisition of physical data with high precision is a key step in reverse engineering (RE). It is an important stimulative for the progress of reverse engineering with which various digitizing devices are invent ed, developed and made applicable. This paper introduces a three dimensional opt ical measurement method based on digital fringe projection technique in RE to im prove the technique through its application. A practical example is presented an d the result demonstrates the applicability and feasibility of the measurement s ystem as well as the reliability and validity of relevant methods and algorithms .展开更多
Three-dimensional (3D) profile measurement is an indispensable process for assisting the manufacture of various optic, especially aspheric surfaces. This work presents the measurement error calibration of a 3D profi...Three-dimensional (3D) profile measurement is an indispensable process for assisting the manufacture of various optic, especially aspheric surfaces. This work presents the measurement error calibration of a 3D profile measurement system, namely PMI700. Measurement errors induced by measuring tool radius, alignment error and the temperature variation were analyzed through geometry analysis and simulation. A quantitative method for the compensation of tool radius and an alignment error compensation model based on the least square method were proposed to reduce the measurement error. To verify the feasibility of PMI700, a plane and a non-uniform hyperboloidal mirror were measured by PMI700 and interferometer, respectively. The data provided by two systems were high coincident. The direct subtractions of results from two systems indicate RMS deviations for both segments were less than 0.22.展开更多
This paper proposes an automatic model-based viewpoint planning method, which can achieve high precision and high efficiency for freeform surfaces inspection using plane structured light scanners. The surface model is...This paper proposes an automatic model-based viewpoint planning method, which can achieve high precision and high efficiency for freeform surfaces inspection using plane structured light scanners. The surface model is utilized in stereolithography format, which is widely used as an industrial standard. The proposed method consists of 4 steps: topology reconstruction, mesh refinement, scan direction determination and viewpoint generation. In the first step, the topology structure of the surface model is reconstructed according to a designed data structure, based on which a neighborhood search algorithm is developed. In the second step, big facets in the surface model are segmented into several small ones, which are suitable for viewpoint planning. In the third step, an initial scan region of a viewpoint is grouped by the neighborhood search algorithm combining with total area and normal vector restrictions. Accordingly, the scan direction is determined by the normal vectors of facets in the initial scan region. In the fourth step, the position, the orientation, and the final scan region of the viewpoint are determined by 4 scan constraints, i.e., field of view, working distance range, view angle and overlap. Experimental results verify the effectiveness and advantages of the proposed method.展开更多
文摘A conoscopic holography-based 3D measurement system for analyzing the defects on the surface of steel plates was introduced in this paper. The hardware, which is automated through software, performs sampling of the steel plate surface. Through the software interface,point-cloud data of the steel plate surface are obtained and reconstructed to form a 3D image of the steel plate surface. The software allows automatic analysis of steel plate surface detects through identification of the bulges and depressions. In addition, the software can also automatically calculate the defect information ,such as the deepest point, volume, opening area, opening length, and so on, thereby determining the defect size. The results determined by this 3D measurement system were found to be in good agreement with the actual values.
基金the National Science Foundation of China (No.50745020).
文摘We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacement sensor based on the Michelson interference principle, a 3D platform based on vertical scanning, a measuring and control circuit, and an industrial control computer. It was a closed loop control system, which changed the traditional moving stylus scanning style into a moving platform scanning style. When the workpiece was measured, the lever of the displacement sensor returned to the balanced position in every sample interval according to the zero offset of the displacement sensor. The non-linear error caused by the rotation of the lever was, therefore, very small even if the measuring range was wide. The instrument can measure the roughness and the profile size of a curved surface.
基金Project(2102–2020)supported by the SPEV Project,University of Hradec Kralove,FIM,Czech RepublicProject(Vot-20H04)supported by Universiti Teknologi Malaysia(UTM)+1 种基金Project(Vot 4L876)supported by Malaysia Research University Network(MRUN)Project(Vot 5F073)supported by the Fundamental Research Grant Scheme(FRGS),Ministry of Education Malaysia。
文摘The measurement of the surface quality and the profile preciseness is major issues in many industrial branches such that the surface quality of semi products directly affects the subsequent production steps.Although,there are many ways to obtain required data,the hardware necessary for the measurements such as 2D or 3D scanners,depending on the problem’s complexity,is too expensive.Therefore,in this paper,what we put forward as a novelty is an algorithm which is verified on the model of simple 3D scanner on the image processing basis with the resolution of 0.1 mm.There are many ways to scan surface profile;however,the image processing currently is the most trending topic in industry automation.Most importantly,in order to obtain surface images,standard high resolution reflex camera is used and thus the post processing could be realized with MatLab as the software environment.Therefore,this solution is an alternative to the expensive scanners,and single-purpose devices could be extended by many additional functions.
基金This work was supported by the natural science foundation of Henan province(004061000)
文摘To realize the automation of fashion industry measuring,designing and manufacturing, the auto-measurement of 3D size of human body is of great importance. The auto measurement system of 3D human body based on Charge Coupled Devices (CCD) and infrared sensors is presented in this paper. The system can measure the bare size of human body that excludes the effect of clothing quickly and accurately.
基金supported by the National Natural Science Foundation of China(grants No.41373121 and 41072099)the scientific and technological project of SINOPEC under Contract No.P05069Support by SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms,China
文摘The formation mechanisms and processes of geochemical anomalies used as proxies in surface geochemistry exploration (SGE) have not been well understood. Previous studies cannot realize 3D measurement of microseeping hydrocarbons from reservoirs to the surface, which made it difficult to understand the features and pathways of deep hydrocarbon microseepages. Understanding the processes of hydrocarbon microseepages will contribute to the acceptance and effectiveness of surface geochemistry. Based on a simplified geological model of hydrocarbon microseepages, including hydrocarbon reservoir, direct caprock, overlying strata and Quaternary sediments, this work established a 3D experimental system to simulate the mechanisms and processes of deep hydrocarbon microseepes extending to the surface. The dispersive halos of microseeping hydrocarbons in the subsurface were adequately described by using this 3D experimental system. Results indicate that different migration patterns of hydrocarbons above the point gas source within the simulated caprock and overlying strata can be reflected by the ratio of i-butane to n-butane (i-C4/n-C4), which follow diffusion and infiltration (buoyancy) mechanisms. This is not the case for vertical measurement lines far from the point gas source. A vertical gas flow in the form of a plume was found during hydrocarbon microseepage. For sampling methods, the high-density grid sampling is favorable for delineating prospecting targets. Hydrocarbon infiltration or buoyancy flow occurs in the zones of infiltration clusters, coupling with a diffusion mechanism at the top of the water table and forming surface geochemical anomalies. These results are significant in understanding hydrocarbon microseepage and interpreting SGE data.
基金supported by the National Natural Science Foundation of China (90816025, 10721062)National Basic Research Program of China (2006CB601205)Program for New Century Excellent Talents in University of the Ministry of Education of China (NCET-04-0272)
文摘Topology optimization of continuum structures with design-dependent loads has long been a challenge. In this paper, the topology optimization of 3D structures subjected to design-dependent loads is investigated. A boundary search scheme is proposed for 3D problems, by means of which the load surface can be identified effectively and efficiently, and the difficulties arising in other approaches can be overcome. The load surfaces are made up of the boundaries of finite elements and the loads can be directly applied to corresponding element nodes, which leads to great convenience in the application of this method. Finally, the effectiveness and efficiency of the proposed method is validated by several numerical examples.
文摘A 3- D free surface flow in open channels based on the Reynolds equations with the k-ε turbulence closure model is presented in this paper. Insted of the 'rigid lid' approximation, the solution of the free surface equation is implemented in the velocity-pressure iterative procedure on the basis of the conventional SIMPLE method. This model was used to compute the flow in rectangular channels with trenches dredged across the bottom. The velocity, eddy viscosity coefficient, turbulent shear stress, turbulent kinetic energy and elevation of the free surface can be obtained. The computed results are in good agreement with previous experimental data.
文摘This paper presents a complete system for scanning the geometry and texture of a large 3D object, then the automatic registration is performed to obtain a whole realistic 3D model. This system is composed of one line strip laser and one color CCD camera. The scanned object is pictured twice by a color CCD camera. First, the texture of the scanned object is taken by a color CCD camera. Then the 3D information of the scanned object is obtained from laser plane equations. This paper presents a practical way to implement the three dimensional measuring method and the automatic registration of a large 3D object and a pretty good result is obtained after experiment verification.
文摘Direct current measurements at the mooring station M southwest of Yonakuni-jima are carried out from May 18 to June 1, 1996. The Observed Kuroshio Current at 290 and 594 m depths of the mooring station M is quite steady ddring the pened of Observation. The rotary spectral estimates of the current data by the maximum entropy method show that there are prominent diurnal and semidiurnal spectral peaks. The semidiurnal tide is predominant at 290 m depth while there is the current fluctuation with the inertial period except for the tidal oscillation at 594 m depth. There are also peaks at the pened of 4-7 d. There is a significant coherence between two time series of currents at 290 and 594 m depths in the pened range of 3 - 5 d. The Japan Meteorological Agency (JMA) wind data during the same period as the oceanic measurement are used in comparison with the current meter data. Rotary spectral estimates for the wind data show significant peaks at the period of 3 - 5 d. It is concluded from the cross spectra between the wind and the current that the current fluctuation of 3 - 5 d period at 290 m depth response to the wind fluctuation of the same periods with time lags smaller than 1 d.
基金supported by the National Natural Science Foundation of China (10772017 and 10472011)BUAA-985 Foundation
文摘A bionic experimental platform was designed for the purpose of investigating time accurate three-dimensional flow field, using digital particle image velocimetry (DSPIV). The wake behind the flapping trail of a robotic fish model was studied at high spatial resolution. The study was performed in a water channel. A robot fish model was designed and built. The model was fixed onto a rigid support frame- work using a cable-supporting method, with twelve stretched wires. The entire tail of the model can perform prescribed motions in two degrees of freedom, mainly in carangiform mode, by driving its afterbody and lunate caudal fin respectively. The DSPIV system was set up to operate in a trans- lational manner, measuring velocity field in a series of parallel slices. Phase locked measurements were repeated for a number of runs, allowing reconstruction of phase average flow field. Vortex structures with phase history of the wake were obtained. The study reveals some new and complex three-dimensional flow structures in the wake of the fish, including "reverse hairpin vortex" and "reverse Karman S-H vortex rings", allowing insight into physics of this complex flow.
基金Project supported by the Science Foundation of Shanghai Munici pal Commission of Science and Technology ( Grant No.011461059)
文摘Acquisition of physical data with high precision is a key step in reverse engineering (RE). It is an important stimulative for the progress of reverse engineering with which various digitizing devices are invent ed, developed and made applicable. This paper introduces a three dimensional opt ical measurement method based on digital fringe projection technique in RE to im prove the technique through its application. A practical example is presented an d the result demonstrates the applicability and feasibility of the measurement s ystem as well as the reliability and validity of relevant methods and algorithms .
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos. 61128012, 61061160503 and 61222506), the Key Laboratory of Photoelectronic Imaging Technology and System, BIT, Ministry of Education of China (No. 2013OEIOF06).
文摘Three-dimensional (3D) profile measurement is an indispensable process for assisting the manufacture of various optic, especially aspheric surfaces. This work presents the measurement error calibration of a 3D profile measurement system, namely PMI700. Measurement errors induced by measuring tool radius, alignment error and the temperature variation were analyzed through geometry analysis and simulation. A quantitative method for the compensation of tool radius and an alignment error compensation model based on the least square method were proposed to reduce the measurement error. To verify the feasibility of PMI700, a plane and a non-uniform hyperboloidal mirror were measured by PMI700 and interferometer, respectively. The data provided by two systems were high coincident. The direct subtractions of results from two systems indicate RMS deviations for both segments were less than 0.22.
文摘This paper proposes an automatic model-based viewpoint planning method, which can achieve high precision and high efficiency for freeform surfaces inspection using plane structured light scanners. The surface model is utilized in stereolithography format, which is widely used as an industrial standard. The proposed method consists of 4 steps: topology reconstruction, mesh refinement, scan direction determination and viewpoint generation. In the first step, the topology structure of the surface model is reconstructed according to a designed data structure, based on which a neighborhood search algorithm is developed. In the second step, big facets in the surface model are segmented into several small ones, which are suitable for viewpoint planning. In the third step, an initial scan region of a viewpoint is grouped by the neighborhood search algorithm combining with total area and normal vector restrictions. Accordingly, the scan direction is determined by the normal vectors of facets in the initial scan region. In the fourth step, the position, the orientation, and the final scan region of the viewpoint are determined by 4 scan constraints, i.e., field of view, working distance range, view angle and overlap. Experimental results verify the effectiveness and advantages of the proposed method.