The magnetic properties of the claw pole have a direct effect on the output power of a generator Many methods can be used to measure these magnetic properties,each with its own advantages,but an important shortcoming ...The magnetic properties of the claw pole have a direct effect on the output power of a generator Many methods can be used to measure these magnetic properties,each with its own advantages,but an important shortcoming is that all are destructive.In this study,a new non-destructive method to measure the magnetic properties of claw pole was proposed and a corresponding testing set-up was designed.A finite-element model was constructed to simulate the measurement process.Results proved that the measured magnetization-like curves had good agreement with the trend of the input magnetic curves and the effect of the positioning error in the measuring process could be neglected.To further validate the new method,seven types of claw poles of different materials subjected to different heat-treatment processes were forged and tested by both the new method and the conventional ring-sample method.Compared with the latter,the new method showed better consistency,relatively higher accuracy,and much stronger stability of measurement results;however,its sensitivity needs to be improved.The effects of material compositions and heat-treatment parameters on the magnetic properties of the claw pole were briefly analyzed.展开更多
A portable microcomputer-controlled inspection system has been developed for detection of magnetic properties of soft magnetic materials. It incorporates custom designed software for control of the magnetic field duri...A portable microcomputer-controlled inspection system has been developed for detection of magnetic properties of soft magnetic materials. It incorporates custom designed software for control of the magnetic field during operation such as demagnetization, field sweeping, and for data logging and analysis. Results are recorded using a 12-bit analog to digital converter and are then stored on disk. The magnetic hysteresis loop and Barkhausen noise data can be converted into important magnetic parameters: coecivity, remanence, and hysteresis loss, Barkhausen amplitude, and Barkhausen noise energy. This system incorporated with the magnetostriction, and magnetoacoustic emission, is then related with the nondestructive detection of material degradation.展开更多
Anisotropic powder was prepared with precursor (NdDy)-(FeCoNbCu)-B sintered magnets by hydrogen decrepitation, desorption, and subsequent annealing treatment. The hydrogen desorption was performed in magnetic fiel...Anisotropic powder was prepared with precursor (NdDy)-(FeCoNbCu)-B sintered magnets by hydrogen decrepitation, desorption, and subsequent annealing treatment. The hydrogen desorption was performed in magnetic fields of 0, 1, 3, and 5 T. The orientation of tetragonal phase grains of the powder was evaluated from the hysteresis loops measured by extraction magnetometer. Residual hydrogen content of the powder was evaluated by thermal-magnetic analysis. The powder with Hcj, Br, and (BH)max of 1138 kA.m^-1, 1.029 T, and 172.5 kJ.m^-3, respectively, was achieved under the condition of the magnetic field of 3 T. Magnetic properties of the powder, especially, the remanence of the powder, are enhanced upon magnetic fields, which is due to better orientation of powder particles and less residual hydrogen in the powder resulted from the magnetic field during the hydrogen desorption process.展开更多
In many situations such as the cores of a rotating electrical machine and the T joints of a multiphase transformer, the local flux density varies with time in terms of both magnitude and direction, i.e. the flux densi...In many situations such as the cores of a rotating electrical machine and the T joints of a multiphase transformer, the local flux density varies with time in terms of both magnitude and direction, i.e. the flux density vector is rotating. Therefore, the magnetic properties of the core materials under the rotating flux density vector excitation should be properly measured, modeled and applied in the design and analysis of these electromagnetic devices. This paper presents an extensive review on the development of techniques and apparatus for measuring the rotational core losses of soft magnetic materials based on the experiences of various researchers in the last hundred years.展开更多
The 57Fe Mossbauer measurements for amorphous NdxFe1-x films (x=0.20-0.40), prepared by flash evaporation with substrate temperature 77K, show a broad hyperfine distribution and it is nearly independent of Nd content ...The 57Fe Mossbauer measurements for amorphous NdxFe1-x films (x=0.20-0.40), prepared by flash evaporation with substrate temperature 77K, show a broad hyperfine distribution and it is nearly independent of Nd content x. The effective magnetic moment of Fe atoms in the film is μFe=1.30μB and independent of x within the investigated composition range. The magnetic ordering temperatures Tc deduced from Mossbauer measurements are consistent with those from magnetic measurements under the same conditions (H&rarr0).展开更多
Copper and rare earth-doped(RE = La, Gd, Nd) CuFe1.85RE0.15O4nano ferrites were prepared using the so nochemical method. The effective doping of rare-earth(La3+, Nd3+, Gd3+) ions with copper nanoferrites was confirmed...Copper and rare earth-doped(RE = La, Gd, Nd) CuFe1.85RE0.15O4nano ferrites were prepared using the so nochemical method. The effective doping of rare-earth(La3+, Nd3+, Gd3+) ions with copper nanoferrites was confirmed by X-ray diffraction. The tetrahedral and octahedral sites of the nano ferrites were identified through the Fourier transform infrared spectra. The doping of rare-earth elements enhances the optical bandgap energy of the nanoferrites that are observed through Ultraviolet-DRS spectra. The oxidation state of the elements Cu 2 p, La 3 d, Nd 3 d, Gd 3 d, Fe 2 p and O 1 s was analyzed. Scanning electron microscopy images indicate a spherical morphology with agglomeration to some elongate. The values of dielectric constant and conductivity decrease considerably due to doping rare-earth ions in copper nanoferrites. Low saturation magnetization and high coercivity values of rare earth-doped copper nanoferrites are observed from the typical hysteresis curves.展开更多
Ni1-xZnxFe2O4(0≤x≤1,in steps of 0.1) nanocrystallines were synthesized by sol-gel route.The doping effects of zinc on structural,magnetic and microwave absorption properties were investigated in detail.X-ray diffrac...Ni1-xZnxFe2O4(0≤x≤1,in steps of 0.1) nanocrystallines were synthesized by sol-gel route.The doping effects of zinc on structural,magnetic and microwave absorption properties were investigated in detail.X-ray diffraction(XRD) results show that all the samples are single-phase spinel structure.The magnetic and microwave absorption properties are strongly dependent on the zinc content,which can be understood in terms of the cations redistribution in spinel tetrahedral and octahedral sites with the increase of zinc content.The magnetic measurement shows the antiferromagnetic nature of the samples for x=0.9 and x=1.0.The saturation magnetization reaches the maximum of 3.35μB/f.u.at x=0.5.The optimal reflection loss(RL) of-29.6 dB is found at 6.5 GHz for an absorber thickness of 5 mm.The RL values exceeding 10 dB are obtained for the absorber in the range of 3.9-8.9 GHz.These Ni1-xZnxFe2O4 nanocrystallines may be attractive candidates for electromagnetic wave absorption materials.展开更多
基金Partially supported by National Natural Science Foundation of China(Grant No.51875348)
文摘The magnetic properties of the claw pole have a direct effect on the output power of a generator Many methods can be used to measure these magnetic properties,each with its own advantages,but an important shortcoming is that all are destructive.In this study,a new non-destructive method to measure the magnetic properties of claw pole was proposed and a corresponding testing set-up was designed.A finite-element model was constructed to simulate the measurement process.Results proved that the measured magnetization-like curves had good agreement with the trend of the input magnetic curves and the effect of the positioning error in the measuring process could be neglected.To further validate the new method,seven types of claw poles of different materials subjected to different heat-treatment processes were forged and tested by both the new method and the conventional ring-sample method.Compared with the latter,the new method showed better consistency,relatively higher accuracy,and much stronger stability of measurement results;however,its sensitivity needs to be improved.The effects of material compositions and heat-treatment parameters on the magnetic properties of the claw pole were briefly analyzed.
基金Reactor Pressure Boundary Materials Project !under the Nuclear R & D Program by MOST in Korea.
文摘A portable microcomputer-controlled inspection system has been developed for detection of magnetic properties of soft magnetic materials. It incorporates custom designed software for control of the magnetic field during operation such as demagnetization, field sweeping, and for data logging and analysis. Results are recorded using a 12-bit analog to digital converter and are then stored on disk. The magnetic hysteresis loop and Barkhausen noise data can be converted into important magnetic parameters: coecivity, remanence, and hysteresis loss, Barkhausen amplitude, and Barkhausen noise energy. This system incorporated with the magnetostriction, and magnetoacoustic emission, is then related with the nondestructive detection of material degradation.
基金the French Embassy in Beijing for provision of a collaborative research grant as part of a co-research program under the frame of LIA-LAS2M between Northwestern Polytechnic University-Xi'an,China and CNRS-Grenoble,France
文摘Anisotropic powder was prepared with precursor (NdDy)-(FeCoNbCu)-B sintered magnets by hydrogen decrepitation, desorption, and subsequent annealing treatment. The hydrogen desorption was performed in magnetic fields of 0, 1, 3, and 5 T. The orientation of tetragonal phase grains of the powder was evaluated from the hysteresis loops measured by extraction magnetometer. Residual hydrogen content of the powder was evaluated by thermal-magnetic analysis. The powder with Hcj, Br, and (BH)max of 1138 kA.m^-1, 1.029 T, and 172.5 kJ.m^-3, respectively, was achieved under the condition of the magnetic field of 3 T. Magnetic properties of the powder, especially, the remanence of the powder, are enhanced upon magnetic fields, which is due to better orientation of powder particles and less residual hydrogen in the powder resulted from the magnetic field during the hydrogen desorption process.
文摘In many situations such as the cores of a rotating electrical machine and the T joints of a multiphase transformer, the local flux density varies with time in terms of both magnitude and direction, i.e. the flux density vector is rotating. Therefore, the magnetic properties of the core materials under the rotating flux density vector excitation should be properly measured, modeled and applied in the design and analysis of these electromagnetic devices. This paper presents an extensive review on the development of techniques and apparatus for measuring the rotational core losses of soft magnetic materials based on the experiences of various researchers in the last hundred years.
文摘The 57Fe Mossbauer measurements for amorphous NdxFe1-x films (x=0.20-0.40), prepared by flash evaporation with substrate temperature 77K, show a broad hyperfine distribution and it is nearly independent of Nd content x. The effective magnetic moment of Fe atoms in the film is μFe=1.30μB and independent of x within the investigated composition range. The magnetic ordering temperatures Tc deduced from Mossbauer measurements are consistent with those from magnetic measurements under the same conditions (H&rarr0).
基金Project supported by the Science and Engineering Research Board(SERB)New Delhi,India(SR/FTP/PS-068/2014)
文摘Copper and rare earth-doped(RE = La, Gd, Nd) CuFe1.85RE0.15O4nano ferrites were prepared using the so nochemical method. The effective doping of rare-earth(La3+, Nd3+, Gd3+) ions with copper nanoferrites was confirmed by X-ray diffraction. The tetrahedral and octahedral sites of the nano ferrites were identified through the Fourier transform infrared spectra. The doping of rare-earth elements enhances the optical bandgap energy of the nanoferrites that are observed through Ultraviolet-DRS spectra. The oxidation state of the elements Cu 2 p, La 3 d, Nd 3 d, Gd 3 d, Fe 2 p and O 1 s was analyzed. Scanning electron microscopy images indicate a spherical morphology with agglomeration to some elongate. The values of dielectric constant and conductivity decrease considerably due to doping rare-earth ions in copper nanoferrites. Low saturation magnetization and high coercivity values of rare earth-doped copper nanoferrites are observed from the typical hysteresis curves.
基金supported by the National Natural Science Foundation of China (Grant Nos.10874051,51002156,and 11104098)the Natural Science Major Foundation of Anhui Provincial Higher Education Institutions of China (Grant No. KJ2012ZD14)
文摘Ni1-xZnxFe2O4(0≤x≤1,in steps of 0.1) nanocrystallines were synthesized by sol-gel route.The doping effects of zinc on structural,magnetic and microwave absorption properties were investigated in detail.X-ray diffraction(XRD) results show that all the samples are single-phase spinel structure.The magnetic and microwave absorption properties are strongly dependent on the zinc content,which can be understood in terms of the cations redistribution in spinel tetrahedral and octahedral sites with the increase of zinc content.The magnetic measurement shows the antiferromagnetic nature of the samples for x=0.9 and x=1.0.The saturation magnetization reaches the maximum of 3.35μB/f.u.at x=0.5.The optimal reflection loss(RL) of-29.6 dB is found at 6.5 GHz for an absorber thickness of 5 mm.The RL values exceeding 10 dB are obtained for the absorber in the range of 3.9-8.9 GHz.These Ni1-xZnxFe2O4 nanocrystallines may be attractive candidates for electromagnetic wave absorption materials.