We demonstrate an InP/InGaAs PIN photodetector with enhanced quantum efficiency by assembling silicon resonant waveguide gratings for the application of polarization sensitive systems. The measured results show that q...We demonstrate an InP/InGaAs PIN photodetector with enhanced quantum efficiency by assembling silicon resonant waveguide gratings for the application of polarization sensitive systems. The measured results show that quantum efficiency of the photodetector with silicon resonant waveguide gratings can be increased by 31.6% compared with that without silicon resonant waveguide gratings at the wavelength range of 1500 to 1600 nm for TE-polarization.展开更多
According to Lambert’s law,a novel structure of photodetectors,namely photodetectors in siliconon-insulator,is proposed.By choosing a certain thickness value for the SOI layer,the photodetector can absorb blue/violet...According to Lambert’s law,a novel structure of photodetectors,namely photodetectors in siliconon-insulator,is proposed.By choosing a certain thickness value for the SOI layer,the photodetector can absorb blue/violet light effectively and affect the responsivity of the long wavelength in the visible and near-infrared region,making a blue/violet filter unnecessary.The material of the SOI layer is high-resistivity floating-zone silicon which can cause the neutral N type SOI layer to become fully depleted after doping with a P type impurity.This can improve the collection efficiency of short-wavelength photogenerated carriers.The device structure was optimized through numerical simulation,and the results show that the photodiode is a kind of high performance photodetector in the blue/violet region.展开更多
基金supported in part by the National Basic Research Program of China(No.2010CB327600)the National Natural Science Foundation of China(Nos.61020106007 and 61274044)+5 种基金the Natural Science Foundation of Beijing,China(No.4132069)Program of Key International Science and Technology Cooperation Projects(No.2011RR000100)the Fundamental Research Funds for the Central University(No.2011RC0403)111 Project of China(No.B07005)Specialized Research Fund for the Doctoral Program of Higher Education of China(SRFDP)(No.20130005130001)the Program for Chang Jiang Scholars and Innovative Research Team in University,MOE(No.IRT0609)
文摘We demonstrate an InP/InGaAs PIN photodetector with enhanced quantum efficiency by assembling silicon resonant waveguide gratings for the application of polarization sensitive systems. The measured results show that quantum efficiency of the photodetector with silicon resonant waveguide gratings can be increased by 31.6% compared with that without silicon resonant waveguide gratings at the wavelength range of 1500 to 1600 nm for TE-polarization.
基金supported by the State Key Development Program for Basic Research of China(No.2006CB300407)
文摘According to Lambert’s law,a novel structure of photodetectors,namely photodetectors in siliconon-insulator,is proposed.By choosing a certain thickness value for the SOI layer,the photodetector can absorb blue/violet light effectively and affect the responsivity of the long wavelength in the visible and near-infrared region,making a blue/violet filter unnecessary.The material of the SOI layer is high-resistivity floating-zone silicon which can cause the neutral N type SOI layer to become fully depleted after doping with a P type impurity.This can improve the collection efficiency of short-wavelength photogenerated carriers.The device structure was optimized through numerical simulation,and the results show that the photodiode is a kind of high performance photodetector in the blue/violet region.