Nanomeasuring machines developed at the Technische Universitat Ilmenau enable three-dimensional measurements and manufacturing processes with the lowest uncertainties.Due to the requirements for these processes,a high...Nanomeasuring machines developed at the Technische Universitat Ilmenau enable three-dimensional measurements and manufacturing processes with the lowest uncertainties.Due to the requirements for these processes,a highly reproducible and long-term stable tool changing system is needed.For this purpose,kinematically determined couplings are widely used.The state-of-the-art investigations on those are not sufficient for the highest demands on the reproducibility required for this application.A theoretical determination of the reproducibility based on analytical or numerical methods is possible,however not in the desired nanometer range.Due to this,a measurement setup for the determination of the reproducibility in five degrees of freedom with nanometer uncertainty was developed.First,potential measuring devices are systematically examined and measurement principles were developed out of this.A three-dimensional vector-based uncertainty analysis is performed to prove the feasibility of the measurement principle and provides a basis for further design.As a result,a transla-tory measurement uncertainty of 10 nm and a rotatory uncertainty of 11 nrad can be reached.Afterwards,the measurement setup is designed,focusing on the metrological frame and the lift-off device.The developed setup exceeds the uncertainties of the measurement setups presented in the state-of-the-art by an order of magnitude,allowing new in-depth investigations of the reproducibility of kinematic couplings.展开更多
基金the support by the Deutsche Forschungsgemeinschaft(DFG)in the framework of Research Training Group"Tip-and laser-based 3D-Nanofabrication inextended macroscopic working areas"(GRK 2182)at the Technische Universiat Ilmenau,Germany.
文摘Nanomeasuring machines developed at the Technische Universitat Ilmenau enable three-dimensional measurements and manufacturing processes with the lowest uncertainties.Due to the requirements for these processes,a highly reproducible and long-term stable tool changing system is needed.For this purpose,kinematically determined couplings are widely used.The state-of-the-art investigations on those are not sufficient for the highest demands on the reproducibility required for this application.A theoretical determination of the reproducibility based on analytical or numerical methods is possible,however not in the desired nanometer range.Due to this,a measurement setup for the determination of the reproducibility in five degrees of freedom with nanometer uncertainty was developed.First,potential measuring devices are systematically examined and measurement principles were developed out of this.A three-dimensional vector-based uncertainty analysis is performed to prove the feasibility of the measurement principle and provides a basis for further design.As a result,a transla-tory measurement uncertainty of 10 nm and a rotatory uncertainty of 11 nrad can be reached.Afterwards,the measurement setup is designed,focusing on the metrological frame and the lift-off device.The developed setup exceeds the uncertainties of the measurement setups presented in the state-of-the-art by an order of magnitude,allowing new in-depth investigations of the reproducibility of kinematic couplings.