Miniaturization of electronic package leads to high heat density and heat accumulation in electronics device, resulting in short life time and premature failure of the device. Junction temperature and thermal resistan...Miniaturization of electronic package leads to high heat density and heat accumulation in electronics device, resulting in short life time and premature failure of the device. Junction temperature and thermal resistance are the critical parameters that determine the thermal management and reliability in electronics cooling. Metal oxide field effect transistor(MOSFET)is an important semiconductor device for light emitting diode-integrated circuit(LED IC) driver application, and thermal management in MOSFET is a major challenge. In this study, investigations on thermal performance of MOSFET are performed for evaluating the junction temperature and thermal resistance. Suitable modifications in FR4 substrates are proposed by introducing thermal vias and copper layer coating to improve the thermal performance of MOSFET. Experiments are conducted using thermal transient tester(T3ster) at 2.0 A input current and ambient temperature varying from25℃ to 75℃. The thermal parameters are measured for three proposed designs: FR4 with circular thermal vias, FR4 with single strip of copper layer and embedded vias, and FR4 with I-shaped copper layer, and compared with that of plain FR4 substrate. From the experimental results, FR4I-shaped shows promising results by 33.71% reduction in junction temperature and 54.19% reduction in thermal resistance. For elevated temperature, the relative increases in junction temperature and thermal resistance are lower for FR4I-shaped than those for other substrates considered. The introduction of thermal vias and copper layer plays a significant role in thermal performance.展开更多
The single event effect(SEE) is an important consideration in electronic devices used in space environments because it can lead to spacecraft anomalies and failures. The linear energy transfer(LET) of ions is commonly...The single event effect(SEE) is an important consideration in electronic devices used in space environments because it can lead to spacecraft anomalies and failures. The linear energy transfer(LET) of ions is commonly investigated in studies of SEE. The use of a thin detector is an economical way of directly measuring the LET in space. An LET telescope consists of a thin detector as the front detector(D1), along with a back detector that indicates whether D1 was penetrated. The particle radiation effect monitor(PREM) introduced in this paper is designed to categorize the LET into four bins of 0.2–0.4, 0.4–1.0, 1.0–2.0 and 2.0–20 Me V·cm^2/mg, and one integral bin of LET>20 Me V·cm^2/mg. After calibration with heavy ions and Geant4 analysis, the LET boundaries of the first four bins are determined to be 0.236, 0.479, 1.196, 2.254, and 17.551 Me V·cm^2/mg, whereas that of the integral bin is determined to be LET>14.790 Me V·cm^2/mg. The acceptances are calculated by Geant4 analysis as 0.452, 0.451, 0.476, 0.446, and 1.334, respectively. The LET accuracy is shown to depend on the thickness of D1; as D1 is made thinner, the accuracy of the measured values increases.展开更多
This paper sums up four security factors after analyzing co-residency threats caused by the special multitenant environment in the cloud.To secure the factors,a multiway dynamic trust chain transfer model was proposed...This paper sums up four security factors after analyzing co-residency threats caused by the special multitenant environment in the cloud.To secure the factors,a multiway dynamic trust chain transfer model was proposed on the basis of a measurement interactive virtual machine and current behavior to protect the integrity of the system.A trust chain construction module is designed in a virtual machine monitor.Through dynamic monitoring,it achieves the purpose of transferring integrity between virtual machine.A cloud system with a trust authentication function is implemented on the basis of the model,and its practicability is shown.展开更多
The reciprocity measurement theory in anomalous reverberant sound fields was investigated.An improved method Was proposed due to the interrelated errors.The source volume velocity Was corrected by spatial average of m...The reciprocity measurement theory in anomalous reverberant sound fields was investigated.An improved method Was proposed due to the interrelated errors.The source volume velocity Was corrected by spatial average of measurement results and evaluation of the reverberant sound field influence on acoustic energy density.The result was validated in underwater experiment,corrected reciprocity measurement results were almost the same as direct measurement results.It indicates that reverberant sound field does not affect the validitv of the principle,but influences the obtainment of source volume velocity,then influences the measurement of transfer functions with the principle.The proposed method is simple and effective in anomalous reverberant sound fields.The study mav be valuable for the applications which are based on the principle.展开更多
High accuracy and time resolution optical transfer delay(OTD)measurement is highly desired in many multi-path applications,such as optical true-time-delay-based array systems and distributed optical sensors.However,th...High accuracy and time resolution optical transfer delay(OTD)measurement is highly desired in many multi-path applications,such as optical true-time-delay-based array systems and distributed optical sensors.However,the time resolution is usually limited by the frequency range of the probe signal in frequency-multiplexed OTD measurement techniques.Here,we proposed a time-resolution enhanced OTD measurement method based on incoherent optical frequency domain reflectometry(I-OFDR),where an adaptive filter is designed to suppress the spectral leakage from other paths to break the resolution limitation.A weighted least square(WLS)cost function is first established,and then an iteration approach is used to minimize the cost function.Finally,the appropriate filter parameter is obtained according to the convergence results.In a proof-of-concept experiment,the time-domain response of two optical links with a length difference of 900 ps is successfully estimated by applying a probe signal with a bandwidth of 400 MHz.The time resolution is improved by 2.78times compared to the theoretical resolution limit of the inverse discrete Fourier transform(iDFT)algorithm.In addition,the OTD measurement error is below±0.8 ps.The proposed algorithm provides a novel way to improve the measurement resolution without applying a probe signal with a large bandwidth,avoiding measurement errors induced by the dispersion effect.展开更多
The research on gas-liquid multiphase reactions using micro reactors is becoming increasingly widespread, given their excellent mass transfer performance. Establishing an accurate and reliable method to measure the ga...The research on gas-liquid multiphase reactions using micro reactors is becoming increasingly widespread, given their excellent mass transfer performance. Establishing an accurate and reliable method to measure the gas-liquid mass transfer performance of micro reactors is crucial for evaluating and optimizing the design of micro reactor structure. In this paper, the physical absorption method of aqueous solution-CO_(2) and the chemical absorption method of sodium carbonate solution-CO_(2) were proposed. By analyzing the chemical reaction equilibrium during the absorption process, the relationship between the mass transfer of CO_(2) and the solubility of hydroxide ions in the solution was established, and the total gas-liquid mass transfer coefficient was immediately obtained by measuring the p H value. The corresponding testing platform and process have been established based on the characteristics of the proposed method to ensure fast and accurate measurement. In addition, the chemical absorption method takes into account temperature factors that were not previously considered. The volumetric mass transfer coefficient measured by these two methods is in the same range as those measured by other methods using the same microchannel structure in previous literature. The methods have the advantages of low equipment cost, faster measurement speed, and simpler procedures, which can facilitate its wide application to the evaluation of the mass transfer performance and hence can guide the structure optimization of microchannel reactors.展开更多
Earlier this year, the State Administrationof Taxation promulgated the much-antic-ipated transfer pricing measures detailingthe administrative rules for all special taxadjustments. These special tax adjustments,includ...Earlier this year, the State Administrationof Taxation promulgated the much-antic-ipated transfer pricing measures detailingthe administrative rules for all special taxadjustments. These special tax adjustments,including cost sharing, thin capitalization,展开更多
基金Project supported by the Collaborative Research in Engineering,Science&Technology(Grant No.P28C2-13)
文摘Miniaturization of electronic package leads to high heat density and heat accumulation in electronics device, resulting in short life time and premature failure of the device. Junction temperature and thermal resistance are the critical parameters that determine the thermal management and reliability in electronics cooling. Metal oxide field effect transistor(MOSFET)is an important semiconductor device for light emitting diode-integrated circuit(LED IC) driver application, and thermal management in MOSFET is a major challenge. In this study, investigations on thermal performance of MOSFET are performed for evaluating the junction temperature and thermal resistance. Suitable modifications in FR4 substrates are proposed by introducing thermal vias and copper layer coating to improve the thermal performance of MOSFET. Experiments are conducted using thermal transient tester(T3ster) at 2.0 A input current and ambient temperature varying from25℃ to 75℃. The thermal parameters are measured for three proposed designs: FR4 with circular thermal vias, FR4 with single strip of copper layer and embedded vias, and FR4 with I-shaped copper layer, and compared with that of plain FR4 substrate. From the experimental results, FR4I-shaped shows promising results by 33.71% reduction in junction temperature and 54.19% reduction in thermal resistance. For elevated temperature, the relative increases in junction temperature and thermal resistance are lower for FR4I-shaped than those for other substrates considered. The introduction of thermal vias and copper layer plays a significant role in thermal performance.
基金supported by the National Natural Science Foundation of China(Grant No.41374181)the National Key Scientific Instrument and Equipment Development ProjectsChina(Grant No.2012YQ03014207)
文摘The single event effect(SEE) is an important consideration in electronic devices used in space environments because it can lead to spacecraft anomalies and failures. The linear energy transfer(LET) of ions is commonly investigated in studies of SEE. The use of a thin detector is an economical way of directly measuring the LET in space. An LET telescope consists of a thin detector as the front detector(D1), along with a back detector that indicates whether D1 was penetrated. The particle radiation effect monitor(PREM) introduced in this paper is designed to categorize the LET into four bins of 0.2–0.4, 0.4–1.0, 1.0–2.0 and 2.0–20 Me V·cm^2/mg, and one integral bin of LET>20 Me V·cm^2/mg. After calibration with heavy ions and Geant4 analysis, the LET boundaries of the first four bins are determined to be 0.236, 0.479, 1.196, 2.254, and 17.551 Me V·cm^2/mg, whereas that of the integral bin is determined to be LET>14.790 Me V·cm^2/mg. The acceptances are calculated by Geant4 analysis as 0.452, 0.451, 0.476, 0.446, and 1.334, respectively. The LET accuracy is shown to depend on the thickness of D1; as D1 is made thinner, the accuracy of the measured values increases.
基金supported by The National Natural Science Foundation for Young Scientists of China under Grant No.61303263the Jiangsu Provincial Research Foundation for Basic Research(Natural Science Foundation)under Grant No.BK20150201+4 种基金the Scientific Research Key Project of Beijing Municipal Commission of Education under Grant No.KZ201210015015Project Supported by the National Natural Science Foundation of China(Grant No.61370140)the Scientific Research Common Program of the Beijing Municipal Commission of Education(Grant No.KMKM201410015006)The National Science Foundation of China under Grant Nos.61232016 and U1405254and the PAPD fund
文摘This paper sums up four security factors after analyzing co-residency threats caused by the special multitenant environment in the cloud.To secure the factors,a multiway dynamic trust chain transfer model was proposed on the basis of a measurement interactive virtual machine and current behavior to protect the integrity of the system.A trust chain construction module is designed in a virtual machine monitor.Through dynamic monitoring,it achieves the purpose of transferring integrity between virtual machine.A cloud system with a trust authentication function is implemented on the basis of the model,and its practicability is shown.
基金supported by the National Natural Science Foundation of China(51209214)
文摘The reciprocity measurement theory in anomalous reverberant sound fields was investigated.An improved method Was proposed due to the interrelated errors.The source volume velocity Was corrected by spatial average of measurement results and evaluation of the reverberant sound field influence on acoustic energy density.The result was validated in underwater experiment,corrected reciprocity measurement results were almost the same as direct measurement results.It indicates that reverberant sound field does not affect the validitv of the principle,but influences the obtainment of source volume velocity,then influences the measurement of transfer functions with the principle.The proposed method is simple and effective in anomalous reverberant sound fields.The study mav be valuable for the applications which are based on the principle.
基金supported by the National Natural Science Foundation of China(Nos.62075095 and 62271249)the Key Research and Development Program of Jiangsu Province(No.BE2020030)。
文摘High accuracy and time resolution optical transfer delay(OTD)measurement is highly desired in many multi-path applications,such as optical true-time-delay-based array systems and distributed optical sensors.However,the time resolution is usually limited by the frequency range of the probe signal in frequency-multiplexed OTD measurement techniques.Here,we proposed a time-resolution enhanced OTD measurement method based on incoherent optical frequency domain reflectometry(I-OFDR),where an adaptive filter is designed to suppress the spectral leakage from other paths to break the resolution limitation.A weighted least square(WLS)cost function is first established,and then an iteration approach is used to minimize the cost function.Finally,the appropriate filter parameter is obtained according to the convergence results.In a proof-of-concept experiment,the time-domain response of two optical links with a length difference of 900 ps is successfully estimated by applying a probe signal with a bandwidth of 400 MHz.The time resolution is improved by 2.78times compared to the theoretical resolution limit of the inverse discrete Fourier transform(iDFT)algorithm.In addition,the OTD measurement error is below±0.8 ps.The proposed algorithm provides a novel way to improve the measurement resolution without applying a probe signal with a large bandwidth,avoiding measurement errors induced by the dispersion effect.
文摘The research on gas-liquid multiphase reactions using micro reactors is becoming increasingly widespread, given their excellent mass transfer performance. Establishing an accurate and reliable method to measure the gas-liquid mass transfer performance of micro reactors is crucial for evaluating and optimizing the design of micro reactor structure. In this paper, the physical absorption method of aqueous solution-CO_(2) and the chemical absorption method of sodium carbonate solution-CO_(2) were proposed. By analyzing the chemical reaction equilibrium during the absorption process, the relationship between the mass transfer of CO_(2) and the solubility of hydroxide ions in the solution was established, and the total gas-liquid mass transfer coefficient was immediately obtained by measuring the p H value. The corresponding testing platform and process have been established based on the characteristics of the proposed method to ensure fast and accurate measurement. In addition, the chemical absorption method takes into account temperature factors that were not previously considered. The volumetric mass transfer coefficient measured by these two methods is in the same range as those measured by other methods using the same microchannel structure in previous literature. The methods have the advantages of low equipment cost, faster measurement speed, and simpler procedures, which can facilitate its wide application to the evaluation of the mass transfer performance and hence can guide the structure optimization of microchannel reactors.
文摘Earlier this year, the State Administrationof Taxation promulgated the much-antic-ipated transfer pricing measures detailingthe administrative rules for all special taxadjustments. These special tax adjustments,including cost sharing, thin capitalization,