The wireless communication system's performance is greatly constrained by the wireless channel characteristics,especially in some specific environment.Therefore,signal transmission will be greatly impacted even if...The wireless communication system's performance is greatly constrained by the wireless channel characteristics,especially in some specific environment.Therefore,signal transmission will be greatly impacted even if not in a complicated topography.Testing results show that it is hardly to characterize the radio propagation properties for the antenna installed on the ground.In order to ensure a successful communication,the radio frequency(RF)wireless signal intensity monitor system was designed.We can get the wireless link transmission loss through measuring signal strength from received node.The test shows that the near-ground wireless signal propagation characteristics still can be characterized by the log distance propagation loss model.These results will conduce to studying the transmission characteristic of Near-Earth wireless signals and will predict the coverage of the earth's surface wireless sensor network.展开更多
New positioning applications’ availability requirements demand receivers with higher sensitivities and ability to process multiple GNSS signals. Possible applications include acquiring one signal per GNSS constellati...New positioning applications’ availability requirements demand receivers with higher sensitivities and ability to process multiple GNSS signals. Possible applications include acquiring one signal per GNSS constellation in the same frequency band and combining them for increased sensitivity or predicting acquisition of other signals. Frequency domain processing can be used for this purpose, since it benefits from parallel processing capabilities of Fast Fourier Transform (FFT), which can be efficiently implemented in software receivers. On the other hand, long coherent integration times are mainly limited due to large FFT size in receivers using frequency domain techniques. A new method is proposed to address the problems in frequency domain receivers without compromising the resources and execution time. A pre-correlation accumulation (PCA) is proposed to partition the received samples into one-code-period blocks, and to sum them together. As a result, the noise is averaged out and the correlation results will gain more power, provided that the relative phase between the data segments is compensated for. In addition to simplicity, the proposed PCA method enables the use of one-size FFT for all integration times. A post-correlation peak combination is also proposed to remove the need for double buffering. The proposed methods are implemented in a configurable Simulink model, developed for acquiring recorded GNSS signals. For weak signal scenarios, a Spirent GPS simulator is used as a source. Acquisition results for GPS L1 C/A and GLONASS L1OF are shown and the performance of the proposed technique is discussed. The proposed techniques target GNSS receivers using frequency domain processing aiming at accommodating all the GNSS signals, while minimizing resource usage. They also apply to weak signal acquisition in frequency domain to answer the availability demand of today’s GNSS positioning applications.展开更多
There are numerous applications, such as Radar, that leverage wideband technology. However, the presence of noise introduces certain limitations and challenges. It is crucial to harness wideband technology for applica...There are numerous applications, such as Radar, that leverage wideband technology. However, the presence of noise introduces certain limitations and challenges. It is crucial to harness wideband technology for applications demanding the rapid and precise transmission of diverse information from one point to another within a short timeframe. The ability to report a signal without tuning within the input bandwidth stands out as one of the advantages of employing a digital wideband receiver. As indicated, a digital wideband receiver plays a pivotal role in achieving high precision and accuracy. The primary distinction between Analog and Digital Instantaneous Frequency Measurement lies in the fact that analog Instantaneous Frequency Measurement (IFM) receivers have traditionally covered extensive input bandwidths, reporting one accurate frequency per short pulse. In the contemporary landscape, digital IFM systems utilize high-sampling-rate Analog-to-Digital Converters (ADC) along with Hilbert transforms to generate two output channels featuring a 90-degree phase shift. This paper explores the improvement of sensitivity in current digital IFM receivers. The optimization efforts target the Hilbert transform and autocorrelations architectures, aiming to refine the system’s ability to report fine frequencies within a noisy wide bandwidth environment, thereby elevating its overall sensitivity.展开更多
Automatic robot navigation is being utilized in many industries for the purpose of high speed work delivery. Color follower, fix path follower robots are current solution to this activities but dynamic path configurat...Automatic robot navigation is being utilized in many industries for the purpose of high speed work delivery. Color follower, fix path follower robots are current solution to this activities but dynamic path configuration is not possible in these robots. Hence new system proposes effective and fully dynamic path follower robots using RFID and directional antenna. Radio Frequency Identification (RFID) system permits automatic identification of objects with RFID tags using radio waves which have been widely used in mobile robot navigation, localization and mapping both in indoor and outdoor environment. This article presents a navigation strategy for autonomous mobile robot using passive RFID system. Proposed robot system is provided with RFID tag functionality which will load tag number and direction instruction. At some turning point, user will put RF tag, this tag will be read by RF reader which is placed on robot. As per direction instruction robot will change the direction and reach to the destination. Also as per the movement, robot will send its GPS location to PC (Personal Computer) which will be displayed on PC. Hence main goal is to provide more reliable and low energy consumption based indoor positioning system which will be achieved using directional antenna.展开更多
An adaptive response compensation technique has been proposed to compensate for the response lag of the constant-current hot-wire anemometer (CCA) by taking advantage of digital signal processing technology. First, we...An adaptive response compensation technique has been proposed to compensate for the response lag of the constant-current hot-wire anemometer (CCA) by taking advantage of digital signal processing technology. First, we have developed a simple response compensation scheme based on a precise theoretical expression for the frequency response of the CCA (Kaifuku et al. 2010, 2011), and verified its effectiveness experimentally for hot-wires of 5 μm, 10 μm and 20 μm in diameter. Then, another novel technique based on a two-sensor probe technique—originally developed for the response compensation of fine-wire thermocouples (Tagawa and Ohta 1997;Tagawa et al. 1998)—has been proposed for estimating thermal time-constants of hot-wires to realize the in-situ response compensation of the CCA. To demonstrate the usefulness of the CCA, we have applied the response compensation schemes to multipoint velocity measure- ment of a turbulent wake flow formed behind a circular cylinder by using a CCA probe consisting of 16 hot-wires, which were driven simultaneously by a very simple constant-current circuit. As a result, the proposed response compensation techniques for the CCA work quite successfully and are capable of improving the response speed of the CCA to obtain reliable measurements comparable to those by the commercially-available constant-temperature hot-wire anemometer (CTA).展开更多
In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced ap...In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced applications in WAMPAC (wide area monitoring, protection, and control) systems provide a cost effective solution to improve system planning, operation, maintenance, and energy trading. Synchronized measurement technology and the application are an important element of WAMPAC. In addition, PMUs (phasor measurement units) are the most accurate and advanced time-synchronized technology available for WAMPAC application. Therefore, the original measurement system of PMUs has been constructed in Japan. This paper describes the estimation method of a center of inertia frequency by applying actual measurement data. The application of this method enables us to extract power system oscillations from measurement data appropriately. Moreover, this proposed method will help to the clarification of power system dynamics and this application will make it possible to realize the monitoring of power system oscillations associated with the power system stability.展开更多
瞬时测频(instantaneous frequency measurement,IFM)接收机是电子侦察中非常重要的测频资源,其结构简单、灵敏度高、侦察频带宽、分辨率高,可以快速测定被测信号的频率,在现代电子战中得到广泛应用。基于IFM微波鉴相器在某一瞬间只能...瞬时测频(instantaneous frequency measurement,IFM)接收机是电子侦察中非常重要的测频资源,其结构简单、灵敏度高、侦察频带宽、分辨率高,可以快速测定被测信号的频率,在现代电子战中得到广泛应用。基于IFM微波鉴相器在某一瞬间只能响应一个信号的特性,结合IFM工作原理,研究了一种新的(超过2个信号)对IFM干扰策略,并分析了干扰机理,通过模拟仿真对IFM的干扰效果进行了评估。仿真结果表明:多信号交叠可以对IFM系统产生明显的干扰效果,可以使得其无法测得正确频率,并错误地输出同时到达信号指示。展开更多
多输入多输出-正交频分复用(MIMO-OFDM)无线通信系统中接收信号从空间、时间、频率的维度形成多因素的阵列信号,传统的矢量或者矩阵代数的建模方法在处理多因素信号问题上显得不足,无法利用多因素间的关系,而张量分析在解决多维阵列信...多输入多输出-正交频分复用(MIMO-OFDM)无线通信系统中接收信号从空间、时间、频率的维度形成多因素的阵列信号,传统的矢量或者矩阵代数的建模方法在处理多因素信号问题上显得不足,无法利用多因素间的关系,而张量分析在解决多维阵列信号处理的问题上具有优势。针对MIMO无线通信系统,结合OFDM技术,研究了张量信号的建模及分解方法,并充分利用张量信号的分解唯一性提高无线接收信号的检测能力。提出了基于CP(CANDECOMP/PARAFAC)张量分解方法对未知信道状态(CSI)的MIMO-OFDM系统进行接收端的张量信号建模和盲检测,并通过仿真分析验证了模型的可行性。仿真结果表明,在接收天线数目大于发送天线数目且各径信道独立情况下,基于CP分解的接收信号盲检测算法在误码率为10-4时,随着接收天线数目增加,信噪比可获得约5 d B的增益。展开更多
文摘The wireless communication system's performance is greatly constrained by the wireless channel characteristics,especially in some specific environment.Therefore,signal transmission will be greatly impacted even if not in a complicated topography.Testing results show that it is hardly to characterize the radio propagation properties for the antenna installed on the ground.In order to ensure a successful communication,the radio frequency(RF)wireless signal intensity monitor system was designed.We can get the wireless link transmission loss through measuring signal strength from received node.The test shows that the near-ground wireless signal propagation characteristics still can be characterized by the log distance propagation loss model.These results will conduce to studying the transmission characteristic of Near-Earth wireless signals and will predict the coverage of the earth's surface wireless sensor network.
文摘New positioning applications’ availability requirements demand receivers with higher sensitivities and ability to process multiple GNSS signals. Possible applications include acquiring one signal per GNSS constellation in the same frequency band and combining them for increased sensitivity or predicting acquisition of other signals. Frequency domain processing can be used for this purpose, since it benefits from parallel processing capabilities of Fast Fourier Transform (FFT), which can be efficiently implemented in software receivers. On the other hand, long coherent integration times are mainly limited due to large FFT size in receivers using frequency domain techniques. A new method is proposed to address the problems in frequency domain receivers without compromising the resources and execution time. A pre-correlation accumulation (PCA) is proposed to partition the received samples into one-code-period blocks, and to sum them together. As a result, the noise is averaged out and the correlation results will gain more power, provided that the relative phase between the data segments is compensated for. In addition to simplicity, the proposed PCA method enables the use of one-size FFT for all integration times. A post-correlation peak combination is also proposed to remove the need for double buffering. The proposed methods are implemented in a configurable Simulink model, developed for acquiring recorded GNSS signals. For weak signal scenarios, a Spirent GPS simulator is used as a source. Acquisition results for GPS L1 C/A and GLONASS L1OF are shown and the performance of the proposed technique is discussed. The proposed techniques target GNSS receivers using frequency domain processing aiming at accommodating all the GNSS signals, while minimizing resource usage. They also apply to weak signal acquisition in frequency domain to answer the availability demand of today’s GNSS positioning applications.
文摘There are numerous applications, such as Radar, that leverage wideband technology. However, the presence of noise introduces certain limitations and challenges. It is crucial to harness wideband technology for applications demanding the rapid and precise transmission of diverse information from one point to another within a short timeframe. The ability to report a signal without tuning within the input bandwidth stands out as one of the advantages of employing a digital wideband receiver. As indicated, a digital wideband receiver plays a pivotal role in achieving high precision and accuracy. The primary distinction between Analog and Digital Instantaneous Frequency Measurement lies in the fact that analog Instantaneous Frequency Measurement (IFM) receivers have traditionally covered extensive input bandwidths, reporting one accurate frequency per short pulse. In the contemporary landscape, digital IFM systems utilize high-sampling-rate Analog-to-Digital Converters (ADC) along with Hilbert transforms to generate two output channels featuring a 90-degree phase shift. This paper explores the improvement of sensitivity in current digital IFM receivers. The optimization efforts target the Hilbert transform and autocorrelations architectures, aiming to refine the system’s ability to report fine frequencies within a noisy wide bandwidth environment, thereby elevating its overall sensitivity.
文摘Automatic robot navigation is being utilized in many industries for the purpose of high speed work delivery. Color follower, fix path follower robots are current solution to this activities but dynamic path configuration is not possible in these robots. Hence new system proposes effective and fully dynamic path follower robots using RFID and directional antenna. Radio Frequency Identification (RFID) system permits automatic identification of objects with RFID tags using radio waves which have been widely used in mobile robot navigation, localization and mapping both in indoor and outdoor environment. This article presents a navigation strategy for autonomous mobile robot using passive RFID system. Proposed robot system is provided with RFID tag functionality which will load tag number and direction instruction. At some turning point, user will put RF tag, this tag will be read by RF reader which is placed on robot. As per direction instruction robot will change the direction and reach to the destination. Also as per the movement, robot will send its GPS location to PC (Personal Computer) which will be displayed on PC. Hence main goal is to provide more reliable and low energy consumption based indoor positioning system which will be achieved using directional antenna.
文摘An adaptive response compensation technique has been proposed to compensate for the response lag of the constant-current hot-wire anemometer (CCA) by taking advantage of digital signal processing technology. First, we have developed a simple response compensation scheme based on a precise theoretical expression for the frequency response of the CCA (Kaifuku et al. 2010, 2011), and verified its effectiveness experimentally for hot-wires of 5 μm, 10 μm and 20 μm in diameter. Then, another novel technique based on a two-sensor probe technique—originally developed for the response compensation of fine-wire thermocouples (Tagawa and Ohta 1997;Tagawa et al. 1998)—has been proposed for estimating thermal time-constants of hot-wires to realize the in-situ response compensation of the CCA. To demonstrate the usefulness of the CCA, we have applied the response compensation schemes to multipoint velocity measure- ment of a turbulent wake flow formed behind a circular cylinder by using a CCA probe consisting of 16 hot-wires, which were driven simultaneously by a very simple constant-current circuit. As a result, the proposed response compensation techniques for the CCA work quite successfully and are capable of improving the response speed of the CCA to obtain reliable measurements comparable to those by the commercially-available constant-temperature hot-wire anemometer (CTA).
文摘In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced applications in WAMPAC (wide area monitoring, protection, and control) systems provide a cost effective solution to improve system planning, operation, maintenance, and energy trading. Synchronized measurement technology and the application are an important element of WAMPAC. In addition, PMUs (phasor measurement units) are the most accurate and advanced time-synchronized technology available for WAMPAC application. Therefore, the original measurement system of PMUs has been constructed in Japan. This paper describes the estimation method of a center of inertia frequency by applying actual measurement data. The application of this method enables us to extract power system oscillations from measurement data appropriately. Moreover, this proposed method will help to the clarification of power system dynamics and this application will make it possible to realize the monitoring of power system oscillations associated with the power system stability.
文摘瞬时测频(instantaneous frequency measurement,IFM)接收机是电子侦察中非常重要的测频资源,其结构简单、灵敏度高、侦察频带宽、分辨率高,可以快速测定被测信号的频率,在现代电子战中得到广泛应用。基于IFM微波鉴相器在某一瞬间只能响应一个信号的特性,结合IFM工作原理,研究了一种新的(超过2个信号)对IFM干扰策略,并分析了干扰机理,通过模拟仿真对IFM的干扰效果进行了评估。仿真结果表明:多信号交叠可以对IFM系统产生明显的干扰效果,可以使得其无法测得正确频率,并错误地输出同时到达信号指示。
文摘多输入多输出-正交频分复用(MIMO-OFDM)无线通信系统中接收信号从空间、时间、频率的维度形成多因素的阵列信号,传统的矢量或者矩阵代数的建模方法在处理多因素信号问题上显得不足,无法利用多因素间的关系,而张量分析在解决多维阵列信号处理的问题上具有优势。针对MIMO无线通信系统,结合OFDM技术,研究了张量信号的建模及分解方法,并充分利用张量信号的分解唯一性提高无线接收信号的检测能力。提出了基于CP(CANDECOMP/PARAFAC)张量分解方法对未知信道状态(CSI)的MIMO-OFDM系统进行接收端的张量信号建模和盲检测,并通过仿真分析验证了模型的可行性。仿真结果表明,在接收天线数目大于发送天线数目且各径信道独立情况下,基于CP分解的接收信号盲检测算法在误码率为10-4时,随着接收天线数目增加,信噪比可获得约5 d B的增益。