Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and qu...Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and quasi-static pressure.However,the quantitative relationship between the two contributions is unclear,and it is difficult to provide reasonable theoretical support for the design of water decoupling blasting.In this study,a theoretical model of blasting fracturing partitioning is established.The mechanical mechanism and determination method of the optimal decoupling coefficient are obtained.The reliability is verified through model experiments and a field test.The results show that with the increasing of decoupling coefficient,the rock breaking ability of blasting dynamic action decreases,while quasi-static action increases and then decreases.The ability of quasi-static action to wedge into cracks changes due to the spatial adjustment of the blast hole and crushed zone.The quasi-static action plays a leading role in the fracturing range,determining an optimal decoupling coefficient.The optimal water decoupling coefficient is not a fixed value,which can be obtained by the proposed theoretical model.Compared with the theoretical results,the maximum error in the model experiment results is 8.03%,and the error in the field test result is 3.04%.展开更多
In traditional Chinese medicine(TCM),based on various pathogenic symptoms and the‘golden chamber’medical text,Huangdi Neijing,diabetes mellitus falls under the category‘collateral disease’.TCM,with its wealth of e...In traditional Chinese medicine(TCM),based on various pathogenic symptoms and the‘golden chamber’medical text,Huangdi Neijing,diabetes mellitus falls under the category‘collateral disease’.TCM,with its wealth of experience,has been treating diabetes for over two millennia.Different antidiabetic Chinese herbal medicines re-duce blood sugar,with their effective ingredients exerting unique advantages.As well as a glucose lowering effect,TCM also regulates bodily functions to prevent diabetes associated complications,with reduced side effects compared to western synthetic drugs.Chinese herbal medicine is usually composed of polysaccharides,saponins,al-kaloids,flavonoids,and terpenoids.These active ingredients reduce blood sugar via various mechanism of actions that include boosting endogenous insulin secretion,enhancing insulin sensitivity and adjusting key enzyme activity and scavenging free radicals.These actions regulate glycolipid metabolism in the body,eventually achiev-ing the goal of normalizing blood glucose.Using different animal models,a number of molecular markers are available for the detection of diabetes induction and the molecular pathology of the disease is becoming clearer.Nonetheless,there is a dearth of scientific data about the pharmacology,dose-effect relationship,and structure-activity relationship of TCM and its constituents.Further research into the efficacy,toxicity and mode of action of TCM,using different metabolic and molecular markers,is key to developing novel TCM antidiabetic formulations.展开更多
The presence of toxic elements in manganese slag(MSG)poses a threat to the environment due to potential pollution.Utilizing CO_(2) curing on MS offers a promising approach to immobilize toxic substances within this ma...The presence of toxic elements in manganese slag(MSG)poses a threat to the environment due to potential pollution.Utilizing CO_(2) curing on MS offers a promising approach to immobilize toxic substances within this material,thereby mitigating their release into the natural surroundings.This study investigates the impact of CO_(2) cured MS on various rheological parameters,including slump flow,plastic viscosity(η),and yield shear stress(τ).Additionally,it assesses flexural and compressive strengths(f_(t) and f_(cu)),drying shrinkage rates(DSR),durability indicators(chloride ion migration coefficient(CMC),carbonization depth(CD)),and the leaching behavior of heavy metal elements.Microscopic examination via scanning electron microscopy(SEM)is employed to elucidate the underlying mechanisms.The results indicate that CO_(2) curing significantly enhances the slump flow of ultra-high performance concrete(UHPC)by up to 51.2%.Moreover,it reduces UHPC’sηandτby rates ranging from 0%to 52.7%and 0%to 40.2%,respectively.The DSR exhibits a linear increase corresponding to the mass ratio of CO_(2) cured MS.Furthermore,CO_(2) curing enhances both f_(t) and f_(cu) of UHPC by up to 28.7%and 17.6%,respectively.The electrical resistance is also improved,showing an increase of up to 53.7%.The relationship between mechanical strengths and electrical resistance follows a cubic relationship.The CO_(2) cured MS demonstrates a notable decrease in the CMC and CD by rates ranging from 0%to 52.6%and 0%to 26.1%,respectively.The reductions of leached chromium(Cr)and manganese(Mn)are up to 576.3%and 1312.7%,respectively.Overall,CO_(2) curing also enhances the compactness of UHPC,thereby demonstrating its potential to improve both mechanical and durability properties.展开更多
Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely comme...Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.展开更多
[Objectives] This study was conducted to investigate the mechanism of action of glyasperin A in the treatment of atherosclerosis using a network pharmacology approach. [Methods] Targets related to atherosclerosis were...[Objectives] This study was conducted to investigate the mechanism of action of glyasperin A in the treatment of atherosclerosis using a network pharmacology approach. [Methods] Targets related to atherosclerosis were searched in GeneCards database. An active ingredient-disease-target network was constructed by Cytoscape 3.7.1. A target protein interaction network was constructed by String database. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on the DAVID database. [Results] Glyasperin A acted on 36 atherosclerosis-related targets, and the biofunctional and pathway enrichment analyses showed that it was mainly involved in response to xenobiotic stimulus, drug transport across blood-brain barrier, lipid oxidation, barrier, and lipid oxidation, etc. The results showed that glyasperin A acted on 36 atherosclerosis-related targets. The biofunctional and pathway enrichment analyses showed that it was mainly involved in response to xenobiotic stimulus, drug transport across blood-brain barrier, lipid oxidation, positive regulation of protein localization to nucleus, and hepoxilin biosynthetic process, and it played an anti-fatigue role through signal pathways such as serotonergic synapse, efferocytosis, arachidonic acid metabolism, chemical carcinogenesis-receptor activation and platelet activation. [Conclusions] Glyasperin A has multi-target and multi-pathway effects in the treatment of atherosclerosis. This study provides reference for further research on glyasperin A in the treatment of atherosclerosis.展开更多
[Objectives]To explore the action mechanism of Mongolian medicine Rhododendron micranthum Turcz.on lung cancer by network pharmacology.[Methods]Based on the high-throughput experiment and reference database(HERB)of tr...[Objectives]To explore the action mechanism of Mongolian medicine Rhododendron micranthum Turcz.on lung cancer by network pharmacology.[Methods]Based on the high-throughput experiment and reference database(HERB)of traditional Chinese medicine,component target database(Swiss ADME),small molecule drug target prediction online platform(SWISS Target Prediction),human gene business card database(GENECARD),the database of genes and mutation sites related to human diseases(DISGENET)and other databases,the target genes of drugs and diseases were screened out.Venny software was used for obtaining the target intersection of active components of the Mongolian medicine R.micranthum Turcz.and the lung cancer,a CytoNCA plug-in in cytoscape 3.10.0 software was used for screening candidate core target genes,and related effective components were obtained in a reverse direction.A drug-active ingredient-gene-disease regulation network was established,a protein-protein interaction(PPI)network was established by means of the STRING database to screen core genes,and common targets were screened by the David database.Gene Ontology(GO)function and Kyoto Encyclopedia of Genes and Genomes(KEGG)were used for enrichment analysis.[Results]There were 13 effective components of Mongolian medicine R.micranthum Turcz.for treating lung cancer and 115 drug disease intersection target genes.Core genes affecting the disease included SRC,HSP90AB1,EGFR,AKT1,and ERBB2.GO functional enrichment analysis involved 462 items of biological processes,64 items of cellular components and 126 items of molecular functions.Enrichment analysis of KEGG signaling pathways screened out cancer pathways,endocrine resistance,PI3K-Akt signaling pathways,proteoglycans in cancer and other signaling pathways.[Conclusions]Mongolian medicine R.micranthum Turcz.can inhibit the proliferation of lung cancer cells from multiple targets and pathways,and the results of network pharmaceutical analysis provide a theoretical basis for further experimental research.展开更多
The study by Yang et al presents a comprehensive investigation into the thera-peutic potential of curcumin for gastric cancer(GC).Using network pharma-cology,the researchers identified 48 curcumin-related genes,31 of ...The study by Yang et al presents a comprehensive investigation into the thera-peutic potential of curcumin for gastric cancer(GC).Using network pharma-cology,the researchers identified 48 curcumin-related genes,31 of which overlap with GC targets.Key genes,including ESR1,EGFR,CYP3A4,MAPK14,CYP1A2,and CYP2B6,are linked to poor survival in GC patients.Molecular docking con-firmed strong binding affinity of curcumin to these genes.In vitro experiments demonstrated that curcumin effectively inhibits the growth and proliferation of BGC-823,suggesting its therapeutic potential in GC through multiple targets and pathways.展开更多
Basketball shooting technique is the core technology. The shooting angle, basket entering angle, ball's rotation, aiming at point, exerting strength cooperatively with the whole body, and flicking the ball using inde...Basketball shooting technique is the core technology. The shooting angle, basket entering angle, ball's rotation, aiming at point, exerting strength cooperatively with the whole body, and flicking the ball using index finger before it leaves from hand are the important factors to decide if the shooting techniques are reasonable and the successful shooting rate is high or not. In this paper, the theory of biomechanics is analyzed around basketball spin on the role of shooting, shooting aiming point selection diversity, difference and its impact on investment and basketball shooting rate.展开更多
The paper first introduces the definition and classification of plant growth promoting rhizobacteria (PGPR), then reviews the research achievements on the mechanism of action of plant growth promoting rhizobacteria,...The paper first introduces the definition and classification of plant growth promoting rhizobacteria (PGPR), then reviews the research achievements on the mechanism of action of plant growth promoting rhizobacteria, including growth pro-moting mechanism and bio-control mechanism, subsequently lists the use of excel-lent plant growth promoting rhizobacteria strains in recent years, especial y Pseu-domonas and Bacil us strains, and final y discusses problems existing in this area and points out issues requiring further exploration, including PGPR screening meth-ods, preservation methods, mechanism of action, in order to commercialize PGPR as soon as possible and practical y realize its application to production.展开更多
Extreme freeze-thaw action occurs on the Qinghai-Tibet Plateau due to its unique climate resulting from high elevation and cold temperature.This action causes damage to the surface soil structure, as soil erosion in t...Extreme freeze-thaw action occurs on the Qinghai-Tibet Plateau due to its unique climate resulting from high elevation and cold temperature.This action causes damage to the surface soil structure, as soil erosion in the Qinghai-Tibet Plateau is dominated by freeze-thaw erosion.In this research,freezing–thawing process of the soil samples collected from the Qinghai–Tibet Plateau was carried out by laboratory experiments to determinate the volume variation of soil as well as physical and mechanical properties, such as porosity, granularity and uniaxial compressive strength, after the soil experiences various freeze–thaw cycles.Results show that cohesion and uniaxial compressive strength decreased as the volume and porosity of the soil increased after experiencing various freeze–thaw cycles, especially in the first six freeze–thaw cycles.Consequently, the physical and mechanical properties of the soil were altered.However, granularity and internal friction angle did not vary significantly with an increase in the freeze–thaw cycle.The structural damage among soil particles due to frozen water expansion was the major cause of changes in soil mechanical behavior in the Qinghai–Tibet Plateau.展开更多
The effects of several collectors and their dosage on pure ilmenorutile atdifferent pH values were studied and the collecting strength of several representative collectorswas investigated. The experimental results ind...The effects of several collectors and their dosage on pure ilmenorutile atdifferent pH values were studied and the collecting strength of several representative collectorswas investigated. The experimental results indicate that diphosphonic acid is a good collector forilmenorutile and the recovery of ilmenorutile ranges from 90.87 percent to 91.70 percent when thepulp pH value is 2.0-4.0 and the dosage is 75 mg/L. The sequence of collecting ability for severalcollectors is as follows: diphosphonic acid> TF279 > cyclic allryl hydroximic acid > benzyl arsenicacid> salicylic hydroximic acid> alkyl hydroximic acid. Meanwhile, IAS (infrared absorptionspectrum) and XPS (X-ray photoelectron spectroscopy) were used to detect and analyze the actionmechanism of diphosphonic acid on ilmenorutile. IAS results showed that the characteristicabsorption peak relating to P=O as well as P-O vibration occurred between wave numeber 1140 and 1032cm^(-1), and diphosphonic acid had adsorbed on the surface of ilmenorutile. XPS results indicatedthat the binding energy of P2P peak of ilmenorutile had changed 0.45 eV after treated bydiphosphonic acid. This proves that the adsorption is mainly chemical adsorption.展开更多
Ilmenite is an essential mineral for the extraction of titanium.Conventional physical separation methods have difficulty recovering fine ilmenite,and dressing plants have begun applying flotation to recover ilmenite.T...Ilmenite is an essential mineral for the extraction of titanium.Conventional physical separation methods have difficulty recovering fine ilmenite,and dressing plants have begun applying flotation to recover ilmenite.The interaction of reagent groups with Ti and Fe sites on the ilmenite surface dramatically influences the ilmenite flotation.However,the investigation on Fe sites has received more attention because the activity of Ti is lower than that of Fe.For the activators on ilmenite flotation,most are metal ions but typically lead ions.The metal ions of activators promote ilmenite flotation by increasing the active sites on the ilmenite surface.Combined reagents have a better selective separation of ilmenite than single reagents due to their synergistic effect.Combining the lead ion(Pb^(2+))and the benzyl hydroxamic acid(BHA)into a Pb-BHA complex has a marked effect on ilmenite flotation,which puts forward a new idea of developing combined reagents for ilmenite flotation.This review considers reagent types and action mechanisms in ilmenite flotation.On the basis of the analysis of previous research,a brief future outlook of reagent types and action mechanisms in ilmenite flotation is also proposed in this study.展开更多
Ultraviolet(UV)-induced photoaging skin has become an urgent issue.The functional foods and cosmetics aiming to improve skin photoaging are developing rapidly,and the demand is gradually increasing year by year.Collag...Ultraviolet(UV)-induced photoaging skin has become an urgent issue.The functional foods and cosmetics aiming to improve skin photoaging are developing rapidly,and the demand is gradually increasing year by year.Collagen peptides have been proven to display diverse physiological activities,such as excellent moisture retention activity,hygroscopicity,tyrosinase inhibitory activity and antioxidant activity,which indicates that they have great potential in amelioration of UV-induced photoaging.The main objective of this article is to recap the main mechanisms to improve photoaging skin by collagen peptides and their physiological activities in photo-protection.Furthermore,the extraction and structural characteristics of collagen peptides are overviewed.More importantly,some clinical trials on the beneficial effect on skin of collagen peptides are also discussed.In addition,prospects and challenges of collagen peptides are emphatically elucidated in this review.This article implies that collagen peptides have great potential as an effective ingredient in food and cosmetics industry with a wide application prospect.展开更多
Despite that some approved drugs and genetically engineered vaccines against hepatitis B virus(HBV)are available for HBV patients,HBV infection is still a severe public health problem in the world.All the approved the...Despite that some approved drugs and genetically engineered vaccines against hepatitis B virus(HBV)are available for HBV patients,HBV infection is still a severe public health problem in the world.All the approved therapeutic drugs(including interferonalpha and nucleoside analogues)have their limitations.No drugs or therapeutic methods can cure hepatitis B so far.Therefore,it is urgently needed to discover and develop new anti-HBV drugs,especially nonnucleoside agents.Naturally originated compounds with enormous molecular complexity and diversity offer a great opportunity to find novel anti-HBV lead compounds with specific antiviral mechanisms.In this review,the natural products against HBV are discussed according to their chemical classes such as terpenes,lignans,phenolic acids,polyphenols,lactones,alkaloids and flavonoids.Furthermore,novel mode of action or new targets of some representative anti-HBV natural products are also discussed.The aim of this review is to report new discoveries and updates pertaining to anti-HBV natural products in the last 20years,especially novel skeletons and mode of action.Although many natural products with various skeletons have been reported to exhibit potent anti-HBV effects to date,scarcely any of them are found in the list of conventional anti-HBV drugs worldwide.Additionly,in anti-HBV mechanism of action,only a few references reported new targets or novel mode of action of antiHBV natural products.展开更多
In order to investigate the existing form and action mechanism of minor scandium (Sc) and zirconium (Zr) in AI-Cu-Mg alloy, microstructures of Al-4Cu-1Mg-Sc-Zr alloy under different conditions, including states of...In order to investigate the existing form and action mechanism of minor scandium (Sc) and zirconium (Zr) in AI-Cu-Mg alloy, microstructures of Al-4Cu-1Mg-Sc-Zr alloy under different conditions, including states of as-cast, homogenized, hot-rolled, as-solution and natural aged, were observed by scanning electron microscopy (SEM), X-ray diffractometry (XRD) and transmission electron microscopy (TEM). It is revealed that Sc and Zr are completely dissolved into the supersaturated solid solution in as-cast ingot, but grain refinement is not observed. Coffee-bean-like AI3(Sc, Zr) particles deposit during homogenization of ingot induce an increase in hardness. Al3(Sc, Zr) particles are slightly coarsened in as-solution samples, but they still maintain coherent to matrix, which indicates a high thermal stability of these particles. Good coherency ofAl3(Sc, Zr) particles makes some benefits for inhibiting recrystallization and reserving work-hardening.展开更多
The management of bacterial infections is becoming a major clinical challenge due to the rapid evolution of antibiotic resistant bacteria.As an excellent candidate to overcome antibiotic resistance,antimicrobial pepti...The management of bacterial infections is becoming a major clinical challenge due to the rapid evolution of antibiotic resistant bacteria.As an excellent candidate to overcome antibiotic resistance,antimicrobial peptides(AMPs)that are produced from the synthetic and natural sources demonstrate a broad-spectrum antimicrobial activity with the high specificity and low toxicity.These peptides possess distinctive structures and functions by employing sophisticated mechanisms of action.This comprehensive review provides a broad overview of AMPs from the origin,structural characteristics,mechanisms of action,biological activities to clinical applications.We finally discuss the strategies to optimize and develop AMP-based treatment as the potential antimicrobial and anticancer therapeutics.展开更多
The inclusion complex of β-cyclodextrin (β-CD) and sulfurized isobutylene (T321) was prepared with a co-precipitation method. The tribological properties of the complex with different concentrations were investigate...The inclusion complex of β-cyclodextrin (β-CD) and sulfurized isobutylene (T321) was prepared with a co-precipitation method. The tribological properties of the complex with different concentrations were investigated by a four-ball tester in the solution of polyethylene glycol-600 (PEG-600). The experimental results suggest that the complex exhibits better anti-friction and anti-wear properties than β-CD under different load conditions. The tribo-system shows the least friction coefficient when the concentration of the complex is 0.8%. During the friction process, the complex was decomposed into various molecular fragments and the T321 molecules were released onto the friction interface to provide effective lubrication. The XPS analytical results on the worn surfaces reveal that sulfide film formed by the released T321 plays a major role, and the iron alkoxide and carbon deposition films formed by the β-CD fragments have better anti-friction effect on the sulfide film surface. The interactions of different films result in the formation of a mixed boundary lubrication film.展开更多
The inclusion complex of fl-cyclodextrin (β-CD) and sulfurized isobutylene (T321) was prepared with a co-precipitation method. The tribological properties of the complex with different concentrations were investi...The inclusion complex of fl-cyclodextrin (β-CD) and sulfurized isobutylene (T321) was prepared with a co-precipitation method. The tribological properties of the complex with different concentrations were investigated by a four-ball tester in the solution of polyethylene glycol-600 (PEG-600). The experimental results suggest that the complex exhibits better anti-friction and anti-wear properties than fl-CD under different load conditions. The tribo-system shows the least friction coefficient when the concentration of the complex is 0.8%. During the friction process, the complex was decomposed into various molecular fragments and the T321 molecules were released onto the friction interface to provide effective lubrication. The XPS analytical results on the worn surfaces reveal that sulfide film formed by the released T321 plays a major role, and the iron alkoxide and carbon deposition films formed by the β-CD fragments have better anti-friction effect on the sulfide film surface. The interactions of different films result in the formation of a mixed boundary lubrication film.展开更多
The effects of RKM in comparison with pectin, algin and agar on lipid levels in serum and liver and on liver histopathology in rats were studied. In addition, the effects of all the tested materials on the composition...The effects of RKM in comparison with pectin, algin and agar on lipid levels in serum and liver and on liver histopathology in rats were studied. In addition, the effects of all the tested materials on the composition and output of fecal bile acid were observed. All four kinds of dietary fiber were given at a level of 5% of diet to young male rats of Wistar strain fed on a lipid-rich diet contalning 5 % lard, 1% cholesteral and 0. 25 % cholate. All the dietary fibers tested have similar effects on serum lipid composition. In all groups, these substances prevent ed increases in total cholesterol in fasting serum, but the level of triglyceride was tmchangd.The concentrations of totaI cholesterol and triglyceride in the liver were lower in the RKM group than in the control group and the other three groups. Hepatic histopathological exami nation also showed the most significant lipotropic effect in the RKM group. The daily output of fecal bile acids (CDCA+GDCA) was significantly increased in the four experimental groups than in the normal group and the control group. The increase of CDCA was more significant than GDCA, suggesting that the increase of fecal bile acids, especially CDCA, may be one of the mechanisms by which RKM and the other three dietary fibers exerts a hypocholesterolemic effect展开更多
Leucine-rich repeat kinase 1 (LRRK1) plays a critical role in regulating cytoskeletal organization, osteoclast activity, and bone resorption with little effect on bone formation parameters. Deficiency of Lrrkl in mi...Leucine-rich repeat kinase 1 (LRRK1) plays a critical role in regulating cytoskeletal organization, osteoclast activity, and bone resorption with little effect on bone formation parameters. Deficiency of Lrrkl in mice causes a severe osteopetrosis in the metaphysis of the long bones and vertebrae bones, which makes LRRK1 an attractive alternative drug target for the treatment of osteoporosis and other high-turnover bone diseases. This review recent advances on the functions of the Lrrkl-related family members, Lrrkl deficiency-induced skeletal phenotypes, LRRK1 structure-function, potential biological substrates and interacting proteins, and the mechanisms of LRRK1 action in osteoclasts.展开更多
基金funded by the National Natural Science Foundation of China(No.42372331)the Henan Excellent Youth Science Fund Project(No.242300421145)the Colleges and Universities Youth and Innovation Science and Technology Support Plan of Shandong Province(No.2021KJ024).
文摘Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and quasi-static pressure.However,the quantitative relationship between the two contributions is unclear,and it is difficult to provide reasonable theoretical support for the design of water decoupling blasting.In this study,a theoretical model of blasting fracturing partitioning is established.The mechanical mechanism and determination method of the optimal decoupling coefficient are obtained.The reliability is verified through model experiments and a field test.The results show that with the increasing of decoupling coefficient,the rock breaking ability of blasting dynamic action decreases,while quasi-static action increases and then decreases.The ability of quasi-static action to wedge into cracks changes due to the spatial adjustment of the blast hole and crushed zone.The quasi-static action plays a leading role in the fracturing range,determining an optimal decoupling coefficient.The optimal water decoupling coefficient is not a fixed value,which can be obtained by the proposed theoretical model.Compared with the theoretical results,the maximum error in the model experiment results is 8.03%,and the error in the field test result is 3.04%.
基金the National Key Research and Development Program of China,Grant/Award Number:2021YFD1600100 and 2022YFD1600303。
文摘In traditional Chinese medicine(TCM),based on various pathogenic symptoms and the‘golden chamber’medical text,Huangdi Neijing,diabetes mellitus falls under the category‘collateral disease’.TCM,with its wealth of experience,has been treating diabetes for over two millennia.Different antidiabetic Chinese herbal medicines re-duce blood sugar,with their effective ingredients exerting unique advantages.As well as a glucose lowering effect,TCM also regulates bodily functions to prevent diabetes associated complications,with reduced side effects compared to western synthetic drugs.Chinese herbal medicine is usually composed of polysaccharides,saponins,al-kaloids,flavonoids,and terpenoids.These active ingredients reduce blood sugar via various mechanism of actions that include boosting endogenous insulin secretion,enhancing insulin sensitivity and adjusting key enzyme activity and scavenging free radicals.These actions regulate glycolipid metabolism in the body,eventually achiev-ing the goal of normalizing blood glucose.Using different animal models,a number of molecular markers are available for the detection of diabetes induction and the molecular pathology of the disease is becoming clearer.Nonetheless,there is a dearth of scientific data about the pharmacology,dose-effect relationship,and structure-activity relationship of TCM and its constituents.Further research into the efficacy,toxicity and mode of action of TCM,using different metabolic and molecular markers,is key to developing novel TCM antidiabetic formulations.
基金supported by Hebei Province Higher Education Science and Technology Research Project(No.ZC2024031).
文摘The presence of toxic elements in manganese slag(MSG)poses a threat to the environment due to potential pollution.Utilizing CO_(2) curing on MS offers a promising approach to immobilize toxic substances within this material,thereby mitigating their release into the natural surroundings.This study investigates the impact of CO_(2) cured MS on various rheological parameters,including slump flow,plastic viscosity(η),and yield shear stress(τ).Additionally,it assesses flexural and compressive strengths(f_(t) and f_(cu)),drying shrinkage rates(DSR),durability indicators(chloride ion migration coefficient(CMC),carbonization depth(CD)),and the leaching behavior of heavy metal elements.Microscopic examination via scanning electron microscopy(SEM)is employed to elucidate the underlying mechanisms.The results indicate that CO_(2) curing significantly enhances the slump flow of ultra-high performance concrete(UHPC)by up to 51.2%.Moreover,it reduces UHPC’sηandτby rates ranging from 0%to 52.7%and 0%to 40.2%,respectively.The DSR exhibits a linear increase corresponding to the mass ratio of CO_(2) cured MS.Furthermore,CO_(2) curing enhances both f_(t) and f_(cu) of UHPC by up to 28.7%and 17.6%,respectively.The electrical resistance is also improved,showing an increase of up to 53.7%.The relationship between mechanical strengths and electrical resistance follows a cubic relationship.The CO_(2) cured MS demonstrates a notable decrease in the CMC and CD by rates ranging from 0%to 52.6%and 0%to 26.1%,respectively.The reductions of leached chromium(Cr)and manganese(Mn)are up to 576.3%and 1312.7%,respectively.Overall,CO_(2) curing also enhances the compactness of UHPC,thereby demonstrating its potential to improve both mechanical and durability properties.
基金This work was supported by the National Natural Science Foundation of China(52203066,51973157,61904123)the Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金the National innovation and entrepreneurship training program for college students(202310058007)the Tianjin Municipal college students’innovation and entrepreneurship training program(202310058088)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2018KJ196)the State Key Laboratory of Membrane and Membrane Separation,Tiangong University.
文摘Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.
基金Supported by Project of Science and Technology Department of Guizhou Province([2019]1401ZK[2021]-546)Guizhou Provincial Health Commission(gzwkj2021-464)。
文摘[Objectives] This study was conducted to investigate the mechanism of action of glyasperin A in the treatment of atherosclerosis using a network pharmacology approach. [Methods] Targets related to atherosclerosis were searched in GeneCards database. An active ingredient-disease-target network was constructed by Cytoscape 3.7.1. A target protein interaction network was constructed by String database. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on the DAVID database. [Results] Glyasperin A acted on 36 atherosclerosis-related targets, and the biofunctional and pathway enrichment analyses showed that it was mainly involved in response to xenobiotic stimulus, drug transport across blood-brain barrier, lipid oxidation, barrier, and lipid oxidation, etc. The results showed that glyasperin A acted on 36 atherosclerosis-related targets. The biofunctional and pathway enrichment analyses showed that it was mainly involved in response to xenobiotic stimulus, drug transport across blood-brain barrier, lipid oxidation, positive regulation of protein localization to nucleus, and hepoxilin biosynthetic process, and it played an anti-fatigue role through signal pathways such as serotonergic synapse, efferocytosis, arachidonic acid metabolism, chemical carcinogenesis-receptor activation and platelet activation. [Conclusions] Glyasperin A has multi-target and multi-pathway effects in the treatment of atherosclerosis. This study provides reference for further research on glyasperin A in the treatment of atherosclerosis.
基金Supported by Inner Mongolia Autonomous Region Department of Education Science and Technology Leading Talents and Innovation Team Building Project and Inner Mongolia Natural Science Foundation Project(2024FX36)Key Research Project of Science and Technology in Colleges and Universities of Inner Mongolia Autonomous Region(NJZZ21029).
文摘[Objectives]To explore the action mechanism of Mongolian medicine Rhododendron micranthum Turcz.on lung cancer by network pharmacology.[Methods]Based on the high-throughput experiment and reference database(HERB)of traditional Chinese medicine,component target database(Swiss ADME),small molecule drug target prediction online platform(SWISS Target Prediction),human gene business card database(GENECARD),the database of genes and mutation sites related to human diseases(DISGENET)and other databases,the target genes of drugs and diseases were screened out.Venny software was used for obtaining the target intersection of active components of the Mongolian medicine R.micranthum Turcz.and the lung cancer,a CytoNCA plug-in in cytoscape 3.10.0 software was used for screening candidate core target genes,and related effective components were obtained in a reverse direction.A drug-active ingredient-gene-disease regulation network was established,a protein-protein interaction(PPI)network was established by means of the STRING database to screen core genes,and common targets were screened by the David database.Gene Ontology(GO)function and Kyoto Encyclopedia of Genes and Genomes(KEGG)were used for enrichment analysis.[Results]There were 13 effective components of Mongolian medicine R.micranthum Turcz.for treating lung cancer and 115 drug disease intersection target genes.Core genes affecting the disease included SRC,HSP90AB1,EGFR,AKT1,and ERBB2.GO functional enrichment analysis involved 462 items of biological processes,64 items of cellular components and 126 items of molecular functions.Enrichment analysis of KEGG signaling pathways screened out cancer pathways,endocrine resistance,PI3K-Akt signaling pathways,proteoglycans in cancer and other signaling pathways.[Conclusions]Mongolian medicine R.micranthum Turcz.can inhibit the proliferation of lung cancer cells from multiple targets and pathways,and the results of network pharmaceutical analysis provide a theoretical basis for further experimental research.
基金Supported by The College Students’Innovation and Entrepreneurship Competition,No.2024cxcy504 and No.202410459164.
文摘The study by Yang et al presents a comprehensive investigation into the thera-peutic potential of curcumin for gastric cancer(GC).Using network pharma-cology,the researchers identified 48 curcumin-related genes,31 of which overlap with GC targets.Key genes,including ESR1,EGFR,CYP3A4,MAPK14,CYP1A2,and CYP2B6,are linked to poor survival in GC patients.Molecular docking con-firmed strong binding affinity of curcumin to these genes.In vitro experiments demonstrated that curcumin effectively inhibits the growth and proliferation of BGC-823,suggesting its therapeutic potential in GC through multiple targets and pathways.
文摘Basketball shooting technique is the core technology. The shooting angle, basket entering angle, ball's rotation, aiming at point, exerting strength cooperatively with the whole body, and flicking the ball using index finger before it leaves from hand are the important factors to decide if the shooting techniques are reasonable and the successful shooting rate is high or not. In this paper, the theory of biomechanics is analyzed around basketball spin on the role of shooting, shooting aiming point selection diversity, difference and its impact on investment and basketball shooting rate.
基金Supported by the Science and Technology Project of Nanping Tobacco Company(201203)~~
文摘The paper first introduces the definition and classification of plant growth promoting rhizobacteria (PGPR), then reviews the research achievements on the mechanism of action of plant growth promoting rhizobacteria, including growth pro-moting mechanism and bio-control mechanism, subsequently lists the use of excel-lent plant growth promoting rhizobacteria strains in recent years, especial y Pseu-domonas and Bacil us strains, and final y discusses problems existing in this area and points out issues requiring further exploration, including PGPR screening meth-ods, preservation methods, mechanism of action, in order to commercialize PGPR as soon as possible and practical y realize its application to production.
基金funded by the National Natural Science Foundation of China(Grant No.41401611,41301072)China Postdoctoral Science Foundation(Grant No.2014M560817,2015T81069)the Open Project Program of the State Key Laboratory of Frozen Soil Engineering(Grant No.SKLFSE201208)
文摘Extreme freeze-thaw action occurs on the Qinghai-Tibet Plateau due to its unique climate resulting from high elevation and cold temperature.This action causes damage to the surface soil structure, as soil erosion in the Qinghai-Tibet Plateau is dominated by freeze-thaw erosion.In this research,freezing–thawing process of the soil samples collected from the Qinghai–Tibet Plateau was carried out by laboratory experiments to determinate the volume variation of soil as well as physical and mechanical properties, such as porosity, granularity and uniaxial compressive strength, after the soil experiences various freeze–thaw cycles.Results show that cohesion and uniaxial compressive strength decreased as the volume and porosity of the soil increased after experiencing various freeze–thaw cycles, especially in the first six freeze–thaw cycles.Consequently, the physical and mechanical properties of the soil were altered.However, granularity and internal friction angle did not vary significantly with an increase in the freeze–thaw cycle.The structural damage among soil particles due to frozen water expansion was the major cause of changes in soil mechanical behavior in the Qinghai–Tibet Plateau.
文摘The effects of several collectors and their dosage on pure ilmenorutile atdifferent pH values were studied and the collecting strength of several representative collectorswas investigated. The experimental results indicate that diphosphonic acid is a good collector forilmenorutile and the recovery of ilmenorutile ranges from 90.87 percent to 91.70 percent when thepulp pH value is 2.0-4.0 and the dosage is 75 mg/L. The sequence of collecting ability for severalcollectors is as follows: diphosphonic acid> TF279 > cyclic allryl hydroximic acid > benzyl arsenicacid> salicylic hydroximic acid> alkyl hydroximic acid. Meanwhile, IAS (infrared absorptionspectrum) and XPS (X-ray photoelectron spectroscopy) were used to detect and analyze the actionmechanism of diphosphonic acid on ilmenorutile. IAS results showed that the characteristicabsorption peak relating to P=O as well as P-O vibration occurred between wave numeber 1140 and 1032cm^(-1), and diphosphonic acid had adsorbed on the surface of ilmenorutile. XPS results indicatedthat the binding energy of P2P peak of ilmenorutile had changed 0.45 eV after treated bydiphosphonic acid. This proves that the adsorption is mainly chemical adsorption.
基金financially supported by the National Natural Science Foundation of China(No.51764022)the Fok Ying Tong Education Foundation(No.161046)+3 种基金the China Postdoctoral Science Foundation(No.2020M673551XB)the Fundamental Research Funds for Central UniversitiesChina(No.2020XJHH04)the Yueqi Outstanding Scholar Award of China University of Mining and Technology(Beijing)。
文摘Ilmenite is an essential mineral for the extraction of titanium.Conventional physical separation methods have difficulty recovering fine ilmenite,and dressing plants have begun applying flotation to recover ilmenite.The interaction of reagent groups with Ti and Fe sites on the ilmenite surface dramatically influences the ilmenite flotation.However,the investigation on Fe sites has received more attention because the activity of Ti is lower than that of Fe.For the activators on ilmenite flotation,most are metal ions but typically lead ions.The metal ions of activators promote ilmenite flotation by increasing the active sites on the ilmenite surface.Combined reagents have a better selective separation of ilmenite than single reagents due to their synergistic effect.Combining the lead ion(Pb^(2+))and the benzyl hydroxamic acid(BHA)into a Pb-BHA complex has a marked effect on ilmenite flotation,which puts forward a new idea of developing combined reagents for ilmenite flotation.This review considers reagent types and action mechanisms in ilmenite flotation.On the basis of the analysis of previous research,a brief future outlook of reagent types and action mechanisms in ilmenite flotation is also proposed in this study.
基金financially supported by National Key R&D Program of China(No.2016YFD0400200)National Natural Science Foundation of China(No.31972102,31671881,and 31901683)+4 种基金Chongqing Research Program of Basic Research and Frontier Technology(No.cstc2018jcyj A0939)Chongqing Technology Innovation and Application Demonstration Project(No.cstc2018jscx-msyb X0204)Fundamental Research Funds for the Central Universities(No.XDJK2019B028)Innovation Program for Chongqing’s Overseas Returnees(cx2019072)Fundamental Research Funds for the Central Universities,China(SWU 019009)。
文摘Ultraviolet(UV)-induced photoaging skin has become an urgent issue.The functional foods and cosmetics aiming to improve skin photoaging are developing rapidly,and the demand is gradually increasing year by year.Collagen peptides have been proven to display diverse physiological activities,such as excellent moisture retention activity,hygroscopicity,tyrosinase inhibitory activity and antioxidant activity,which indicates that they have great potential in amelioration of UV-induced photoaging.The main objective of this article is to recap the main mechanisms to improve photoaging skin by collagen peptides and their physiological activities in photo-protection.Furthermore,the extraction and structural characteristics of collagen peptides are overviewed.More importantly,some clinical trials on the beneficial effect on skin of collagen peptides are also discussed.In addition,prospects and challenges of collagen peptides are emphatically elucidated in this review.This article implies that collagen peptides have great potential as an effective ingredient in food and cosmetics industry with a wide application prospect.
基金Supported by Zhejiang Provincial Natural Science Foundation of China,No.LY14H310010Public Welfare Technology Applied Research Project of Zhejiang Province?Experimental Animal Science and Technology Project,No.2013C37020Key Project of Chinese Ministry of Education,No.212073
文摘Despite that some approved drugs and genetically engineered vaccines against hepatitis B virus(HBV)are available for HBV patients,HBV infection is still a severe public health problem in the world.All the approved therapeutic drugs(including interferonalpha and nucleoside analogues)have their limitations.No drugs or therapeutic methods can cure hepatitis B so far.Therefore,it is urgently needed to discover and develop new anti-HBV drugs,especially nonnucleoside agents.Naturally originated compounds with enormous molecular complexity and diversity offer a great opportunity to find novel anti-HBV lead compounds with specific antiviral mechanisms.In this review,the natural products against HBV are discussed according to their chemical classes such as terpenes,lignans,phenolic acids,polyphenols,lactones,alkaloids and flavonoids.Furthermore,novel mode of action or new targets of some representative anti-HBV natural products are also discussed.The aim of this review is to report new discoveries and updates pertaining to anti-HBV natural products in the last 20years,especially novel skeletons and mode of action.Although many natural products with various skeletons have been reported to exhibit potent anti-HBV effects to date,scarcely any of them are found in the list of conventional anti-HBV drugs worldwide.Additionly,in anti-HBV mechanism of action,only a few references reported new targets or novel mode of action of antiHBV natural products.
基金Project(2005DFA50550) supported by International Science and Technology Cooperation Program of ChinaProject(2005CB623705) supported by the National Basic Research Program of China
文摘In order to investigate the existing form and action mechanism of minor scandium (Sc) and zirconium (Zr) in AI-Cu-Mg alloy, microstructures of Al-4Cu-1Mg-Sc-Zr alloy under different conditions, including states of as-cast, homogenized, hot-rolled, as-solution and natural aged, were observed by scanning electron microscopy (SEM), X-ray diffractometry (XRD) and transmission electron microscopy (TEM). It is revealed that Sc and Zr are completely dissolved into the supersaturated solid solution in as-cast ingot, but grain refinement is not observed. Coffee-bean-like AI3(Sc, Zr) particles deposit during homogenization of ingot induce an increase in hardness. Al3(Sc, Zr) particles are slightly coarsened in as-solution samples, but they still maintain coherent to matrix, which indicates a high thermal stability of these particles. Good coherency ofAl3(Sc, Zr) particles makes some benefits for inhibiting recrystallization and reserving work-hardening.
基金supported by grants from the National Natural Science Foundation of China (81770176)the special support plan for Zhejiang Province High-Level Talents (2019R52011)。
文摘The management of bacterial infections is becoming a major clinical challenge due to the rapid evolution of antibiotic resistant bacteria.As an excellent candidate to overcome antibiotic resistance,antimicrobial peptides(AMPs)that are produced from the synthetic and natural sources demonstrate a broad-spectrum antimicrobial activity with the high specificity and low toxicity.These peptides possess distinctive structures and functions by employing sophisticated mechanisms of action.This comprehensive review provides a broad overview of AMPs from the origin,structural characteristics,mechanisms of action,biological activities to clinical applications.We finally discuss the strategies to optimize and develop AMP-based treatment as the potential antimicrobial and anticancer therapeutics.
基金Funded by the National Natural Science Foundation of China(No.51075366)
文摘The inclusion complex of β-cyclodextrin (β-CD) and sulfurized isobutylene (T321) was prepared with a co-precipitation method. The tribological properties of the complex with different concentrations were investigated by a four-ball tester in the solution of polyethylene glycol-600 (PEG-600). The experimental results suggest that the complex exhibits better anti-friction and anti-wear properties than β-CD under different load conditions. The tribo-system shows the least friction coefficient when the concentration of the complex is 0.8%. During the friction process, the complex was decomposed into various molecular fragments and the T321 molecules were released onto the friction interface to provide effective lubrication. The XPS analytical results on the worn surfaces reveal that sulfide film formed by the released T321 plays a major role, and the iron alkoxide and carbon deposition films formed by the β-CD fragments have better anti-friction effect on the sulfide film surface. The interactions of different films result in the formation of a mixed boundary lubrication film.
基金Funded by the National Natural Science Foundation of China (No. 51075366)
文摘The inclusion complex of fl-cyclodextrin (β-CD) and sulfurized isobutylene (T321) was prepared with a co-precipitation method. The tribological properties of the complex with different concentrations were investigated by a four-ball tester in the solution of polyethylene glycol-600 (PEG-600). The experimental results suggest that the complex exhibits better anti-friction and anti-wear properties than fl-CD under different load conditions. The tribo-system shows the least friction coefficient when the concentration of the complex is 0.8%. During the friction process, the complex was decomposed into various molecular fragments and the T321 molecules were released onto the friction interface to provide effective lubrication. The XPS analytical results on the worn surfaces reveal that sulfide film formed by the released T321 plays a major role, and the iron alkoxide and carbon deposition films formed by the β-CD fragments have better anti-friction effect on the sulfide film surface. The interactions of different films result in the formation of a mixed boundary lubrication film.
文摘The effects of RKM in comparison with pectin, algin and agar on lipid levels in serum and liver and on liver histopathology in rats were studied. In addition, the effects of all the tested materials on the composition and output of fecal bile acid were observed. All four kinds of dietary fiber were given at a level of 5% of diet to young male rats of Wistar strain fed on a lipid-rich diet contalning 5 % lard, 1% cholesteral and 0. 25 % cholate. All the dietary fibers tested have similar effects on serum lipid composition. In all groups, these substances prevent ed increases in total cholesterol in fasting serum, but the level of triglyceride was tmchangd.The concentrations of totaI cholesterol and triglyceride in the liver were lower in the RKM group than in the control group and the other three groups. Hepatic histopathological exami nation also showed the most significant lipotropic effect in the RKM group. The daily output of fecal bile acids (CDCA+GDCA) was significantly increased in the four experimental groups than in the normal group and the control group. The increase of CDCA was more significant than GDCA, suggesting that the increase of fecal bile acids, especially CDCA, may be one of the mechanisms by which RKM and the other three dietary fibers exerts a hypocholesterolemic effect
基金supported by National Institutes of Health grant AR066831-01ASBMR GAP grant to Weirong R Xingsupported by a senior research career scientist award from the Department of Veteran’s Affairs
文摘Leucine-rich repeat kinase 1 (LRRK1) plays a critical role in regulating cytoskeletal organization, osteoclast activity, and bone resorption with little effect on bone formation parameters. Deficiency of Lrrkl in mice causes a severe osteopetrosis in the metaphysis of the long bones and vertebrae bones, which makes LRRK1 an attractive alternative drug target for the treatment of osteoporosis and other high-turnover bone diseases. This review recent advances on the functions of the Lrrkl-related family members, Lrrkl deficiency-induced skeletal phenotypes, LRRK1 structure-function, potential biological substrates and interacting proteins, and the mechanisms of LRRK1 action in osteoclasts.