The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and micr...The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and microtopography.The results showed a significant decrease in Na_(2)O content(>30 wt.%)of FGD gypsum-treated bauxite residue after 30 min of mechanical ball milling.Mechanical ball milling resulted in differentiation of the elemental distribution,modification of the minerals in crystalline structure,and promotion in the dissolution of alkaline minerals,thus enhancing the acid neutralization capacity of bauxite residue.5 wt.%FGD gypsum combined with 30 min mechanical ball milling was optimal for the dealkalization of bauxite residue.展开更多
The effects of oxidation-reduction treatment and mechanical activation on the hydrochloric acid leaching performance of Panxi ilmenite concentration were investigated.The results show that both of oxidation-reduction ...The effects of oxidation-reduction treatment and mechanical activation on the hydrochloric acid leaching performance of Panxi ilmenite concentration were investigated.The results show that both of oxidation-reduction treatment and mechanical activation significantly accelerate the extraction of Fe,Ca and Mg from Panxi ilmenite concentration;however,the CaO and MgO contents of the calcined residues obtained from oxidized-reduced ilmenite concentration are higher than the standard values required by chlorination process.The Ca and Mg in oxidized-reduced ilmenite concentration can be leached much faster after mechanical activation,yielding a synthetic rutile which meets the requirements of chlorination process containing 90.50% TiO2 and 1.37% total iron as well as combined CaO and MgO of 1.00%.The optimum oxidation and reduction conditions are as follows:oxidization at 900 ℃ in the presence of oxygen for 15 min and reduction at 750 ℃ by hydrogen for 30 min.展开更多
Neutral leach residue of zinc calcine (NLRZC) was mechanically activated by a stirring ball mill. Subsequently, the changes in physicochemical properties and dissolution kinetics in sulphuric acid were studied. The ...Neutral leach residue of zinc calcine (NLRZC) was mechanically activated by a stirring ball mill. Subsequently, the changes in physicochemical properties and dissolution kinetics in sulphuric acid were studied. The crystalline structure, morphology, particle size and specific surface area of the non-activated and mechanically activated NLRZC were characterized by X-ray diffraction, scanning electron microscope, particle size analyzer and volumetric adsorption analyzer, respectively. The characterization results indicate that mechanical activation (MA) induced remarkable changes in the physicochemical properties of NLRZC. The leaching experiments show that MA significantly enhances the leaching reactivity of NLRZC using the zinc extraction as evaluating index. After NLRZC is mechanically activated for 30 min and 60 min, the activation energy decreases from 56.6 kJ/mol of non-activated NLRZC to 36.1 kJ/mol and 29.9 kJ/mol, respectively. The reaction orders of the non-activated, 30 and 60 min activated NLRZC dissolution with respect to H2SO4 concentration were found to be 0.34, 0.30, and 0.29, respectively.展开更多
In order to uncover the intrinsic reasons for spontaneous combustion of sulfide minerals,representative samples were collected from typical metal mines to carry out the mechanical activation experiment.The structures ...In order to uncover the intrinsic reasons for spontaneous combustion of sulfide minerals,representative samples were collected from typical metal mines to carry out the mechanical activation experiment.The structures and heat behaviors of activated samples were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD) analysis,and simultaneous thermal analysis(STA).It is found that the sulfide minerals after mechanical activation show many changes with increased specific surface areas,aggregation phenomenon,decreased diffraction peak intensity,broadened diffraction peak,declined initial temperatures of heat release and self-ignition points.A new theory for explaining the spontaneous combustion of sulfide minerals is put forward:the chemical reaction activity of sulfide minerals is heightened by all kinds of mechanical forces during the mining,and the spontaneous combustion takes place finally under proper environment.展开更多
The use of mechanical activation to enhance gold recovery from a CuPbZn complex sulfide concentrate was investigated. The effects of milling time, ball size, sample to ball ratio and milling speed on thiosulfate leach...The use of mechanical activation to enhance gold recovery from a CuPbZn complex sulfide concentrate was investigated. The effects of milling time, ball size, sample to ball ratio and milling speed on thiosulfate leaching were studied. Under optimum conditions of milling time 1 h, ball size 20 mm, sample to ball ratio 1/15 and mill speed 600 r/min, nearly 78% of sample is amorphized, particle size decreases from d100=30 μm to d100=8 μm, specific surface area increases from 1.3 m2/g to 4.6 m2/g and gold recovery enhances from 17.4 % in non-activated sample to 73.26 %.展开更多
On the basis of analyzing coal gangue's chemical and mineral compositions, the structure change of coal gangue during the mechanical activation was investigated by XRD, FTIR, NMR, and the mechanical strength of the c...On the basis of analyzing coal gangue's chemical and mineral compositions, the structure change of coal gangue during the mechanical activation was investigated by XRD, FTIR, NMR, and the mechanical strength of the cement doped coal gangue with various specific surface area was tested. The experimental results indicate that, the lattice structure of metakaolin in coal gangue samples calcined at 700 ℃ disorganizes gradually and becomes disordered, and the lattice structure of α-quartz is distorted slightly. The pozzolanic activity of the coal gangue increases obviously with its structural disorganization.展开更多
Mechanical activation and liquid phase sintering were used to manufacture high performance Mo-Cu alloy and develop new processes. The microstructures and properties of the alloy were investigated. The experimental res...Mechanical activation and liquid phase sintering were used to manufacture high performance Mo-Cu alloy and develop new processes. The microstructures and properties of the alloy were investigated. The experimental results showed that: (1) the ball milled Mo/Cu powder has lamellar structure, (2) the microstructures of the sintered Mo-Cu alloy were homogenous compound structures of adhesive phase Cu linking Mo grains, (3) Mo grains frequently strung or gathered in Cu phase, and (4) the full densities of Mo-Cu alloy was achieved through sintering and special densification process. As a result, the properties of the alloy are good enough to satisfy various requirements.展开更多
Mechanically activated W-Cu powders were sintered by a spark plasma sinteringsystem (SPS) in order to develop a new process and improve the properties of the alloy. Propertiessuch as density and hardness were measured...Mechanically activated W-Cu powders were sintered by a spark plasma sinteringsystem (SPS) in order to develop a new process and improve the properties of the alloy. Propertiessuch as density and hardness were measured. The microstructures of the sintered W-Cu alloy sampleswere observed by SEM (scanning electron microscope). The results show that spark plasma sinteringcan obviously lower the sintering temperature and increase the density of the alloy. This processcan also improve the hardness of the alloy. SPS is an effective method to obtain W-Cu powders withhigh density and superior physical properties.展开更多
The effect of mechanical activation on the granulometric parameters,microstructure,and leaching efficiency of chalcopyrite was evaluated,and the occurrence/transition of agglomeration and aggregation was discussed.The...The effect of mechanical activation on the granulometric parameters,microstructure,and leaching efficiency of chalcopyrite was evaluated,and the occurrence/transition of agglomeration and aggregation was discussed.The results showed that in 8 h of milling treatment,the agglomeration and the microstructure did not affect each other.However,with prolonging milling time,the crystallite size tended to reach a saturation value,and the stagnating microstructural changes led to the replacement of agglomeration by aggregation.The leaching results indicated that the mechanical activation can strongly enhance the reactivity of chalcopyrite and the hindering effect of aggregation on leaching was considerably greater than that of agglomeration.Consequently,after 8 h of milling,the maximum Cu leaching rate of 80.13%was achieved after 4 h of acid leaching.展开更多
Mechanical activation was used to improve the extraction of chromium in molten NaOH.It is observed that the extraction ratio reaches 97% after leaching for 200 min when chromite ore is mechanically activated for 10 mi...Mechanical activation was used to improve the extraction of chromium in molten NaOH.It is observed that the extraction ratio reaches 97% after leaching for 200 min when chromite ore is mechanically activated for 10 min,but only 34% if not activated.Mechanical activation can decrease the particle size,increase the surface area,and enhance the lattice distortion.Further,the mechanisms for mechanical activation were exposed.The results show that the mechanical activation mainly focuses on chromite ore particle size decrease and the lattice distortion.The formation of aggregation weakens the strengthening effect of mechanical activation for releasing high surface energy.展开更多
Mechanical activation(MA) of malachite was carried out by dry planetary grinding(DPG) and wet Isa grinding(WIG) methods. When the rotational speed was increased to 400 r/min in DPG, the specific surface area of malach...Mechanical activation(MA) of malachite was carried out by dry planetary grinding(DPG) and wet Isa grinding(WIG) methods. When the rotational speed was increased to 400 r/min in DPG, the specific surface area of malachite reached the maximum and the particle size reached the minimum of 0.7–100 μm. Agglomeration occurred between mineral particles when the rotational speed was increased to 580 r/min in DPG.However, no agglomeration was observed among particles with sizes 0.4–3 μm in WIG. X-ray diffraction analysis showed that, at a 580 r/min rotational speed in DPG, the amorphization degree of malachite was 53.12%, whereas that in WIG was 71.40%, indicating that MA led to amorphization and distortion of crystal structures. In addition, in the Fourier transform infrared(FT-IR) spectra of activated malachite, the bands associated with –OH, CO_3^(2-)and metal lattice vibrations of Cu–O and Cu–OH were weakened, and a new H–O–H bending mode and peaks of gaseous CO_2 appeared, indicating that MA decreased the band energy, enhanced dihydroxylation, and increased the chemical reactivity of the malachite.Furthermore, the leaching behavior of copper ore was greatly improved by MA.展开更多
The recovery of lithium from hard rock minerals has received increased attention given the high demand for this element. There- fore, this study optimized an innovative process, which does not require a high-temperatu...The recovery of lithium from hard rock minerals has received increased attention given the high demand for this element. There- fore, this study optimized an innovative process, which does not require a high-temperature calcination step, for lithium extraction from le- pidolite. Mechanical activation and acid digestion were suggested as crucial process parameters, and experimental design and re- sponse-surface methodology were applied to model and optimize the proposed lithium extraction process. The promoting effect of amorphi- zation and the formation of lithium sulfate hydrate on lithium extraction yield were assessed. Several factor combinations led to extraction yields that exceeded 90%, indicating that the proposed process is an effective approach for lithium recovery.展开更多
W-15% Cu (mass fraction) alloys were sintered with mechanically activated powder in order to develop new preparing processes and improve properties of alloys. The microstructures of the activated powder and the sinter...W-15% Cu (mass fraction) alloys were sintered with mechanically activated powder in order to develop new preparing processes and improve properties of alloys. The microstructures of the activated powder and the sintered alloy were observed. Properties such as density were measured. The results show that through mechanical activation, the particle size of the powder becomes finer to sub-micron or nanometer level, some copper was soluble in tungsten, and high density W-Cu alloys can be obtained by mechanically activated powder for its action to the activation sintering.展开更多
Natural minerals receive growing attention as inexpensive, green, and efficient catalysts for degradation of organic pollutants. Mechanical activation of natural chalcopyrite was conducted for improving the catalytic ...Natural minerals receive growing attention as inexpensive, green, and efficient catalysts for degradation of organic pollutants. Mechanical activation of natural chalcopyrite was conducted for improving the catalytic performance.Tetracycline degradation was evaluated in the presence of hydrogen peroxide and mechanically activated chalcopyrite.Tetracycline degradation at 100 min is 55.52%(Chp10), 68.97%(Chp30), 77.79%(Chp60), and 86.43%(Chp120),respectively, and the rate constant of pseudo-first-order kinetics is 0.0079, 0.0109, 0.0137 and 0.0192 min^(-1), respectively.Chalcopyrite samples were examined by multiple characterizations. Mechanical activation of natural chalcopyrite induces the decline of particle size and slight increase of surface area, smaller grain size, lattice strain, and partial sulfur oxidation. The relationship between catalytic activity and property change manifests that the improved catalytic ability is mainly ascribed to the increase of surface area and surface oxidation induced by mechanical activation. This work provides novel insights into the improvement of catalytic performance of natural minerals by mechanical activation.展开更多
After milling in a high energy ball miller for various times, the synthesis reaction process of the Al Ti C powder mixture were investigated by difference thermal analysis (DTA) and X ray diffractometry (XRD). Accordi...After milling in a high energy ball miller for various times, the synthesis reaction process of the Al Ti C powder mixture were investigated by difference thermal analysis (DTA) and X ray diffractometry (XRD). According to the patterns of reaction peaks on the DTA curves, the activation energy of each reaction was calculated. The experimental results of DTA show that the synthesis reaction of Al Ti C powder mixture can be enhanced after high energy milling. The longer the milling time, the lower the reaction temperature. The synthesis reaction of TiC is transformed from Ti+C→TiC to Al 3Ti+C→TiC+3Al with long period milling. Meanwhile, the activation energy of the reaction reduces with increasing milling time. The effect of milling time on reduced activation energy for low temperature region is more significant than that for high temperature region.展开更多
The non-isothermal kinetics of mechanochemical reduction of Ag2O with graphite was studied by DSC and TGA with a model of fitting Malek approach and a model-free advanced isoconversional method of Vyazovkin. To evalua...The non-isothermal kinetics of mechanochemical reduction of Ag2O with graphite was studied by DSC and TGA with a model of fitting Malek approach and a model-free advanced isoconversional method of Vyazovkin. To evaluate the kinetics parameters, Ag2O–graphite mixture of as-received and milled for 2 and 4 h samples were selected. Based on the results obtained by Vyazovkin method calculation, however, the difference between the maximum and minimum values of activation energy is less than 20%-30%of the average activation energy ((99.38±2.36) kJ/mol) and thermal decomposition of mechanically activated Ag2O for 2 h is a multi-step process. Moreover, the thermal decomposition of mechanically activated Ag2O–graphite powder activated for 4 h is a single-step process (the average activation energy=(93.68±2.26) kJ/mol). The kinetics modeling shows that the complexity of thermal decomposition of as-received Ag2O–graphite mixture is higher than that of the others. While, the autocatalytic tendency of as-received Ag2O–graphite mixture is lower than that of the others.展开更多
A novel process for synthesizing nano-ceramics powders, named mechanical & therm al activation processing, is discussed in the present paper. It is a processing based on thermal activation in liquid phase (molten ...A novel process for synthesizing nano-ceramics powders, named mechanical & therm al activation processing, is discussed in the present paper. It is a processing based on thermal activation in liquid phase (molten salt) after mechanical activ ation. The nanometer-sized TiC particles (15-20nm) have been synthesized by the method, and analyzed by X-ray diffraction (XRD), transmission electron microscop e (TEM), scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) sp ectroscopy. An interface interaction between liquid (molten salt) and solid (fin al product particles) phases plays a dominating role for the control of product particles size. The mechanism for the formation of nanometer-sized TiC particles has been discussed.展开更多
The mechanochemical activation for leaching scheelite concentrate with NaOH solution was studied on a laboratory scale. Tungsten recovery more than 98% can be obtained for treating either scheelite concentrate with 66...The mechanochemical activation for leaching scheelite concentrate with NaOH solution was studied on a laboratory scale. Tungsten recovery more than 98% can be obtained for treating either scheelite concentrate with 66.37% WO 3 or middle grade scheelite concentrate with 41.83% WO 3 using relative low NaOH consumption.展开更多
Thermodynamic analysis of the possibility of silver nanocrystalline preparation by high energy milling silver oxide was investigated. The molar Gibbs free energy function of mechanically activated samples was calculat...Thermodynamic analysis of the possibility of silver nanocrystalline preparation by high energy milling silver oxide was investigated. The molar Gibbs free energy function of mechanically activated samples was calculated from the structural defects such as amorphization, dislocation and surface energy. According to the molar Gibbs free energy function, the equilibrium temperature of mechanical reduction of silver oxide milled for 21 h was estimated at about 304 K. Consequently, at this temperature silver oxide cannot be stable and will transform to silver during the milling.展开更多
To explore the effects of mechanical activation methods(ball mill, planetary mill and rod mill) on the oxidation and the spontaneous combustion of pyrite, the kinetic curves of non-activated pyrite and mechanically ac...To explore the effects of mechanical activation methods(ball mill, planetary mill and rod mill) on the oxidation and the spontaneous combustion of pyrite, the kinetic curves of non-activated pyrite and mechanically activated pyrite were created by simultaneous thermal analysis. The structural characteristics and changes of mechanically activated pyrite were investigated by X-ray diffraction and SEM, and the relationship between the mean diameter and the grinding time was obtained by using a laser particle size analyzer. The kinetic model of pyrite and the kinetic parameters were deduced using Bagchi method. The relationship between the kinetic parameters indicates that, pyrite activated by ball milling shows the best thermal stability at the same diameter. By comparing and analyzing the X-ray diffraction patterns, results show that different mechanical activation ways played different roles in structural changes of pyrite.展开更多
基金the National Natural Science Foundation of China(Nos.42177391,42077379)the Natural Science Foundation of Hunan Province,China(No.2022JJ20060)+1 种基金the Central South University Innovation-driven Research Program,China(No.2023CXQD065)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2023ZZTS0800).
文摘The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and microtopography.The results showed a significant decrease in Na_(2)O content(>30 wt.%)of FGD gypsum-treated bauxite residue after 30 min of mechanical ball milling.Mechanical ball milling resulted in differentiation of the elemental distribution,modification of the minerals in crystalline structure,and promotion in the dissolution of alkaline minerals,thus enhancing the acid neutralization capacity of bauxite residue.5 wt.%FGD gypsum combined with 30 min mechanical ball milling was optimal for the dealkalization of bauxite residue.
基金Project(2009FJ3082)supported by Research Project of Science and Technology in Hunan Province,ChinaProject(2007CB613606)supported by the National Basic Research Program of China
文摘The effects of oxidation-reduction treatment and mechanical activation on the hydrochloric acid leaching performance of Panxi ilmenite concentration were investigated.The results show that both of oxidation-reduction treatment and mechanical activation significantly accelerate the extraction of Fe,Ca and Mg from Panxi ilmenite concentration;however,the CaO and MgO contents of the calcined residues obtained from oxidized-reduced ilmenite concentration are higher than the standard values required by chlorination process.The Ca and Mg in oxidized-reduced ilmenite concentration can be leached much faster after mechanical activation,yielding a synthetic rutile which meets the requirements of chlorination process containing 90.50% TiO2 and 1.37% total iron as well as combined CaO and MgO of 1.00%.The optimum oxidation and reduction conditions are as follows:oxidization at 900 ℃ in the presence of oxygen for 15 min and reduction at 750 ℃ by hydrogen for 30 min.
基金Project(51064002)supported by the National Natural Science Foundation of ChinaProject(0728238)supported by the Natural Science Foundation of Guangxi Province,China
文摘Neutral leach residue of zinc calcine (NLRZC) was mechanically activated by a stirring ball mill. Subsequently, the changes in physicochemical properties and dissolution kinetics in sulphuric acid were studied. The crystalline structure, morphology, particle size and specific surface area of the non-activated and mechanically activated NLRZC were characterized by X-ray diffraction, scanning electron microscope, particle size analyzer and volumetric adsorption analyzer, respectively. The characterization results indicate that mechanical activation (MA) induced remarkable changes in the physicochemical properties of NLRZC. The leaching experiments show that MA significantly enhances the leaching reactivity of NLRZC using the zinc extraction as evaluating index. After NLRZC is mechanically activated for 30 min and 60 min, the activation energy decreases from 56.6 kJ/mol of non-activated NLRZC to 36.1 kJ/mol and 29.9 kJ/mol, respectively. The reaction orders of the non-activated, 30 and 60 min activated NLRZC dissolution with respect to H2SO4 concentration were found to be 0.34, 0.30, and 0.29, respectively.
基金Project(2012J05088) supported by the Natural Science Foundation of Fujian Province,ChinaProject(022409) supported by the School Talent Foundation of Fuzhou University,China
文摘In order to uncover the intrinsic reasons for spontaneous combustion of sulfide minerals,representative samples were collected from typical metal mines to carry out the mechanical activation experiment.The structures and heat behaviors of activated samples were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD) analysis,and simultaneous thermal analysis(STA).It is found that the sulfide minerals after mechanical activation show many changes with increased specific surface areas,aggregation phenomenon,decreased diffraction peak intensity,broadened diffraction peak,declined initial temperatures of heat release and self-ignition points.A new theory for explaining the spontaneous combustion of sulfide minerals is put forward:the chemical reaction activity of sulfide minerals is heightened by all kinds of mechanical forces during the mining,and the spontaneous combustion takes place finally under proper environment.
基金supported by Iran Mineral Processing Research Center (IMPRC)the IMPRC for the financial support of this work
文摘The use of mechanical activation to enhance gold recovery from a CuPbZn complex sulfide concentrate was investigated. The effects of milling time, ball size, sample to ball ratio and milling speed on thiosulfate leaching were studied. Under optimum conditions of milling time 1 h, ball size 20 mm, sample to ball ratio 1/15 and mill speed 600 r/min, nearly 78% of sample is amorphized, particle size decreases from d100=30 μm to d100=8 μm, specific surface area increases from 1.3 m2/g to 4.6 m2/g and gold recovery enhances from 17.4 % in non-activated sample to 73.26 %.
基金Funded by the Key Laboratory Foundation of Ecological-Environment Materials (Yancheng Institute of Technology) of Jiangsu Province (XKY2006020)the Natural Science Foundation of Jiangsu Provincial Education Depart-ment(07KJB430123)
文摘On the basis of analyzing coal gangue's chemical and mineral compositions, the structure change of coal gangue during the mechanical activation was investigated by XRD, FTIR, NMR, and the mechanical strength of the cement doped coal gangue with various specific surface area was tested. The experimental results indicate that, the lattice structure of metakaolin in coal gangue samples calcined at 700 ℃ disorganizes gradually and becomes disordered, and the lattice structure of α-quartz is distorted slightly. The pozzolanic activity of the coal gangue increases obviously with its structural disorganization.
文摘Mechanical activation and liquid phase sintering were used to manufacture high performance Mo-Cu alloy and develop new processes. The microstructures and properties of the alloy were investigated. The experimental results showed that: (1) the ball milled Mo/Cu powder has lamellar structure, (2) the microstructures of the sintered Mo-Cu alloy were homogenous compound structures of adhesive phase Cu linking Mo grains, (3) Mo grains frequently strung or gathered in Cu phase, and (4) the full densities of Mo-Cu alloy was achieved through sintering and special densification process. As a result, the properties of the alloy are good enough to satisfy various requirements.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50174007)
文摘Mechanically activated W-Cu powders were sintered by a spark plasma sinteringsystem (SPS) in order to develop a new process and improve the properties of the alloy. Propertiessuch as density and hardness were measured. The microstructures of the sintered W-Cu alloy sampleswere observed by SEM (scanning electron microscope). The results show that spark plasma sinteringcan obviously lower the sintering temperature and increase the density of the alloy. This processcan also improve the hardness of the alloy. SPS is an effective method to obtain W-Cu powders withhigh density and superior physical properties.
基金the Special Fund for the National Natural Science Foundation of China(U1608254)the National Key R&D Program of China(2018YFC1902002).
文摘The effect of mechanical activation on the granulometric parameters,microstructure,and leaching efficiency of chalcopyrite was evaluated,and the occurrence/transition of agglomeration and aggregation was discussed.The results showed that in 8 h of milling treatment,the agglomeration and the microstructure did not affect each other.However,with prolonging milling time,the crystallite size tended to reach a saturation value,and the stagnating microstructural changes led to the replacement of agglomeration by aggregation.The leaching results indicated that the mechanical activation can strongly enhance the reactivity of chalcopyrite and the hindering effect of aggregation on leaching was considerably greater than that of agglomeration.Consequently,after 8 h of milling,the maximum Cu leaching rate of 80.13%was achieved after 4 h of acid leaching.
基金Project(2009AA06XK1485430) supported by the National Hi-tech Research and Development Program of ChinaProject(2007CB613501) supported by the National Basic Research Program of China
文摘Mechanical activation was used to improve the extraction of chromium in molten NaOH.It is observed that the extraction ratio reaches 97% after leaching for 200 min when chromite ore is mechanically activated for 10 min,but only 34% if not activated.Mechanical activation can decrease the particle size,increase the surface area,and enhance the lattice distortion.Further,the mechanisms for mechanical activation were exposed.The results show that the mechanical activation mainly focuses on chromite ore particle size decrease and the lattice distortion.The formation of aggregation weakens the strengthening effect of mechanical activation for releasing high surface energy.
基金financially supported by the Special Funds for the National Natural Science Foundation of China(No.U1608254)the National Key R&D Program of China(No.2018YFC1902002)
文摘Mechanical activation(MA) of malachite was carried out by dry planetary grinding(DPG) and wet Isa grinding(WIG) methods. When the rotational speed was increased to 400 r/min in DPG, the specific surface area of malachite reached the maximum and the particle size reached the minimum of 0.7–100 μm. Agglomeration occurred between mineral particles when the rotational speed was increased to 580 r/min in DPG.However, no agglomeration was observed among particles with sizes 0.4–3 μm in WIG. X-ray diffraction analysis showed that, at a 580 r/min rotational speed in DPG, the amorphization degree of malachite was 53.12%, whereas that in WIG was 71.40%, indicating that MA led to amorphization and distortion of crystal structures. In addition, in the Fourier transform infrared(FT-IR) spectra of activated malachite, the bands associated with –OH, CO_3^(2-)and metal lattice vibrations of Cu–O and Cu–OH were weakened, and a new H–O–H bending mode and peaks of gaseous CO_2 appeared, indicating that MA decreased the band energy, enhanced dihydroxylation, and increased the chemical reactivity of the malachite.Furthermore, the leaching behavior of copper ore was greatly improved by MA.
基金the doctorate grant ref.9244/13-1 supplied by CAPES Foundation,Ministry of Education of Brazil
文摘The recovery of lithium from hard rock minerals has received increased attention given the high demand for this element. There- fore, this study optimized an innovative process, which does not require a high-temperature calcination step, for lithium extraction from le- pidolite. Mechanical activation and acid digestion were suggested as crucial process parameters, and experimental design and re- sponse-surface methodology were applied to model and optimize the proposed lithium extraction process. The promoting effect of amorphi- zation and the formation of lithium sulfate hydrate on lithium extraction yield were assessed. Several factor combinations led to extraction yields that exceeded 90%, indicating that the proposed process is an effective approach for lithium recovery.
文摘W-15% Cu (mass fraction) alloys were sintered with mechanically activated powder in order to develop new preparing processes and improve properties of alloys. The microstructures of the activated powder and the sintered alloy were observed. Properties such as density were measured. The results show that through mechanical activation, the particle size of the powder becomes finer to sub-micron or nanometer level, some copper was soluble in tungsten, and high density W-Cu alloys can be obtained by mechanically activated powder for its action to the activation sintering.
基金Project(2020YFC1908802) supported by the National Key Research and Development Project of China。
文摘Natural minerals receive growing attention as inexpensive, green, and efficient catalysts for degradation of organic pollutants. Mechanical activation of natural chalcopyrite was conducted for improving the catalytic performance.Tetracycline degradation was evaluated in the presence of hydrogen peroxide and mechanically activated chalcopyrite.Tetracycline degradation at 100 min is 55.52%(Chp10), 68.97%(Chp30), 77.79%(Chp60), and 86.43%(Chp120),respectively, and the rate constant of pseudo-first-order kinetics is 0.0079, 0.0109, 0.0137 and 0.0192 min^(-1), respectively.Chalcopyrite samples were examined by multiple characterizations. Mechanical activation of natural chalcopyrite induces the decline of particle size and slight increase of surface area, smaller grain size, lattice strain, and partial sulfur oxidation. The relationship between catalytic activity and property change manifests that the improved catalytic ability is mainly ascribed to the increase of surface area and surface oxidation induced by mechanical activation. This work provides novel insights into the improvement of catalytic performance of natural minerals by mechanical activation.
文摘After milling in a high energy ball miller for various times, the synthesis reaction process of the Al Ti C powder mixture were investigated by difference thermal analysis (DTA) and X ray diffractometry (XRD). According to the patterns of reaction peaks on the DTA curves, the activation energy of each reaction was calculated. The experimental results of DTA show that the synthesis reaction of Al Ti C powder mixture can be enhanced after high energy milling. The longer the milling time, the lower the reaction temperature. The synthesis reaction of TiC is transformed from Ti+C→TiC to Al 3Ti+C→TiC+3Al with long period milling. Meanwhile, the activation energy of the reaction reduces with increasing milling time. The effect of milling time on reduced activation energy for low temperature region is more significant than that for high temperature region.
文摘The non-isothermal kinetics of mechanochemical reduction of Ag2O with graphite was studied by DSC and TGA with a model of fitting Malek approach and a model-free advanced isoconversional method of Vyazovkin. To evaluate the kinetics parameters, Ag2O–graphite mixture of as-received and milled for 2 and 4 h samples were selected. Based on the results obtained by Vyazovkin method calculation, however, the difference between the maximum and minimum values of activation energy is less than 20%-30%of the average activation energy ((99.38±2.36) kJ/mol) and thermal decomposition of mechanically activated Ag2O for 2 h is a multi-step process. Moreover, the thermal decomposition of mechanically activated Ag2O–graphite powder activated for 4 h is a single-step process (the average activation energy=(93.68±2.26) kJ/mol). The kinetics modeling shows that the complexity of thermal decomposition of as-received Ag2O–graphite mixture is higher than that of the others. While, the autocatalytic tendency of as-received Ag2O–graphite mixture is lower than that of the others.
基金The project was supported by China Postdoctoral Science Foundation(No.2003034452)National Natural Science Foundation of China(No.50371027).
文摘A novel process for synthesizing nano-ceramics powders, named mechanical & therm al activation processing, is discussed in the present paper. It is a processing based on thermal activation in liquid phase (molten salt) after mechanical activ ation. The nanometer-sized TiC particles (15-20nm) have been synthesized by the method, and analyzed by X-ray diffraction (XRD), transmission electron microscop e (TEM), scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) sp ectroscopy. An interface interaction between liquid (molten salt) and solid (fin al product particles) phases plays a dominating role for the control of product particles size. The mechanism for the formation of nanometer-sized TiC particles has been discussed.
文摘The mechanochemical activation for leaching scheelite concentrate with NaOH solution was studied on a laboratory scale. Tungsten recovery more than 98% can be obtained for treating either scheelite concentrate with 66.37% WO 3 or middle grade scheelite concentrate with 41.83% WO 3 using relative low NaOH consumption.
文摘Thermodynamic analysis of the possibility of silver nanocrystalline preparation by high energy milling silver oxide was investigated. The molar Gibbs free energy function of mechanically activated samples was calculated from the structural defects such as amorphization, dislocation and surface energy. According to the molar Gibbs free energy function, the equilibrium temperature of mechanical reduction of silver oxide milled for 21 h was estimated at about 304 K. Consequently, at this temperature silver oxide cannot be stable and will transform to silver during the milling.
基金Funded by the National Natural Science Foundation of China(Nos.51174153 and 51374164)Hubei Natural Science Foundation(No.2014CFB879)
文摘To explore the effects of mechanical activation methods(ball mill, planetary mill and rod mill) on the oxidation and the spontaneous combustion of pyrite, the kinetic curves of non-activated pyrite and mechanically activated pyrite were created by simultaneous thermal analysis. The structural characteristics and changes of mechanically activated pyrite were investigated by X-ray diffraction and SEM, and the relationship between the mean diameter and the grinding time was obtained by using a laser particle size analyzer. The kinetic model of pyrite and the kinetic parameters were deduced using Bagchi method. The relationship between the kinetic parameters indicates that, pyrite activated by ball milling shows the best thermal stability at the same diameter. By comparing and analyzing the X-ray diffraction patterns, results show that different mechanical activation ways played different roles in structural changes of pyrite.