Mechanical properties of semi-solid casting are dependent on multiple processing parameters,and improper processing parameters will not only reduce mean data but also increase variations.The present study investigated...Mechanical properties of semi-solid casting are dependent on multiple processing parameters,and improper processing parameters will not only reduce mean data but also increase variations.The present study investigated the impact of parameters in slurry preparation and heat treatment on the yield strength and ductility of T6 heat-treated A356 Al-Si alloy using rapid slurry forming(RSF)semi-solid casting.The focus was primarily on the robustness of mechanical properties based on Taguchi design method.By analyzing signal-to-noise ratio and minimum value calculated from-3S,the optimum slurry preparation parameters and heat treatment parameters were determined to be no quench,enthalpy exchange material(EEM)temperature of 140℃,EEM-to-melt ratio of 6mass%,stirring time of 18 s,solution heat treated at 520℃ for 2 h,and ageing heat treated at 190℃ for 6 h.In a small batch validation,the-3S yield strength and-3S elongation reach 256.1 MPa and 5.03% respectively,showing a satisfactory robustness.The hardness and microstructure of heat-treated samples with the best and worst properties were characterized to gain insight into the underlying mechanisms affecting the mean value and variations of mechanical properties.展开更多
The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scann...The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques,and the 3D dynamic model of the rail-sleeper-ballast bed was constructed using the coupled discrete element method-multiflexible-body dynamics(DEM-MFBD)approach.We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests.It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles,and subsequently the number of contacts between them.As the depth of the granular ballast bed increases,the contact area becomes larger,and the contact force between the ballast particles gradually decreases.Under the action of the elastic USPs,the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced.The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom,and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed.展开更多
The Young's modulus, shear modulus and Poisson's ratio of monolayer arsenene with different sizes were calculated by finite element method, so as to explore the influence of dimension and orientation on the me...The Young's modulus, shear modulus and Poisson's ratio of monolayer arsenene with different sizes were calculated by finite element method, so as to explore the influence of dimension and orientation on the mechanical properties of monolayer arsenene. The calculation results show that the small size has a significant effect on the mechanical properties of the monolayer arsenene. The smaller the size, the larger the Young's modulus and Poisson's ratio of the monolayer arsenene. The size change has a great influence on the Young's modulus of the arsenene handrail direction, and the Young's modulus of the zigzag direction is not sensitive to the size change. Similarly, the size change has a significant effect on the shear modulus of arsenene in the handrail direction, while the shear modulus in the zigzag direction has no significant effect on its size change. For the Poisson's ratio, the situation is just the opposite, and the effect of the size change on the Poisson's ratio of the arsenene zigzag direction is greater than that of the handrail direction.展开更多
This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(...This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(XRD)-based DIP method effectively analyzed the mineral composition contents and spatial distributions of granite. During the particle flow code(PFC2D) model calibration phase, the numerical simulation exhibited that the uniaxial compressive strength(UCS) value, elastic modulus(E), and failure pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351 sets of numerical models and exploring the impacts of mineral composition on the mechanical properties of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile strength(σ_(t)), and E. In contrast, mica had a significant negative correlation for UCS, σ_(t), and E. The presence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased its ductility in UCS and direct tensile strength(DTS) tests. Varying contents of major mineral compositions in granite showed minor influence on the number of cracks in both UCS and DTS tests.展开更多
Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and fou...Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and found that aggregate spalling was one of the main disease types of UTAO.A discrete element model of UTAO pavement structure was constructed to explore the meso-mechanical mechanism of UTAO damage under the influence of layer thickness,gradation,and bonding modulus.The experimental results show that,as the thickness of UTAO decreasing,the maximum value and the mean value of the contact force between all aggregate particles gradually increase,which leads to aggregates more prone to spalling.Compared with OGFC-5 UTAO,AC-5 UTAO presents smaller maximum and average values of all contact forces,and the loading pressure in AC-5 UTAO is fully diffused in the lateral direction.In addition,the increment of pavement modulus strengthens the overall force of aggregate particles inside UTAO,resulting in aggregate particles peeling off more easily.The increase of bonding modulus changes the position where the maximum value of the tangential force appears,whereas has no effect on the normal force.展开更多
We described a method for obtaining fluorine-free Ti_(3)C_(2)Cl_(2)MXene phases by melting copper in CuCl_(2)instead of aluminum in Ti_(3)AlC_(2).XRD results show that when molten salt CuCl_(2)etches Ti_(3)AlC_(2),it ...We described a method for obtaining fluorine-free Ti_(3)C_(2)Cl_(2)MXene phases by melting copper in CuCl_(2)instead of aluminum in Ti_(3)AlC_(2).XRD results show that when molten salt CuCl_(2)etches Ti_(3)AlC_(2),it forms an intermediate product Ti_(3)CuC_(2),and then reacts with Ti_(3)CuC_(2)to obtain Ti_(3)C_(2)Cl_(2).The reaction of Ti_(3)AlC_(2)and CuCl_(2)at a temperature of 800℃for 2 h to obtain Ti_(3)C_(2)Cl_(2)with an optimal lamellar structure is shown in SEM results.The pseudopotential plane-wave(PP-PW)method is used to calculate on the electronic structure.The etching mechanism is investigated by the total energies of each substance.The chemical reaction of Ti_(3)AlC_(2)and CuCl_(2)will first become Ti_(3)CuC_(2)and Cu,and then become Ti_(3)C_(2)Cl_(2)during the Lewis acid etching process,which are consistent with the experimental results.展开更多
Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NIS...Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models.展开更多
A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare...A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare MSS/wood-plastic composites(MSS/WPCs)by replacing talcum powder(TP).The composites were fabricated through melting blending and hot pressing.Their mechanical and combustion properties,which comprise heat release,smoke release,and thermal stability,were systematically investigated.MSS can improve the mechanical strength of the composites through grafting reactions between wood powder and thermoplastics.Notably,MSS/WPC#50(16wt%MSS)with an MSS-to-TP mass ratio of 1:1 exhibited optimal comprehensive performance.Compared with those of WPC#0 without MSS,the tensile,flexural,and impact strengths of MSS/WPC#50 were increased by 18.5%,12.8%,and 18.0%,respectively.Moreover,the MSS/WPC#50 sample achieved the highest limited oxygen index of 22.5%,the highest vertical burning rating at the V-1 level,and the lowest horizontal burning rate at 44.2 mm/min.The formation of a dense and stable char layer led to improved thermal stability and a considerable reduction in heat and smoke releases of MSS/WPC#50.However,the partial replacement of TP with MSS slightly compromised the mechanical and flame-retardant properties,possibly due to the weak grafting caused by SS powder agglomeration.These findings suggest the suitability of MSS/WPCs for high-value-added applications as decorative panels indoors or outdoors.展开更多
Laying the under-sleeper pad(USP)is one of the effective measures commonly used to delay ballast degradation and reduce maintenance workload.To explore the impact of application of the USP on the dynamic and static me...Laying the under-sleeper pad(USP)is one of the effective measures commonly used to delay ballast degradation and reduce maintenance workload.To explore the impact of application of the USP on the dynamic and static mechanical behavior of the ballast track in the heavy-haul railway system,numerical simulation models of the ballast bed with USP and without USP are presented in this paper by using the discrete element method(DEM)-multi-flexible body dynamic(MFBD)coupling analysis method.The ballast bed support stiffness test and dynamic displacement tests were carried out on the actual operation of a heavy-haul railway line to verify the validity of the models.The results show that using the USP results in a 43.01%reduction in the ballast bed support stiffness and achieves a more uniform distribution of track loads on the sleepers.It effectively reduces the load borne by the sleeper directly under the wheel load,with a 7.89%reduction in the pressure on the sleeper.Furthermore,the laying of the USP changes the lateral resistance sharing ratio of the ballast bed,significantly reducing the stress level of the ballast bed under train loads,with an average stress reduction of 42.19 kPa.It also reduces the plastic displacement of ballast particles and lowers the peak value of rotational angular velocity by about 50%to 70%,which is conducive to slowing down ballast bed settlement deformation and reducing maintenance costs.In summary,laying the USP has a potential value in enhancing the stability and extending the lifespan of the ballast bed in heavy-haul railway systems.展开更多
High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic ...High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic mechanical properties of shale.Dynamic experiments on shale subjected to true triaxial compression at different strain rates are first conducted in this research.The dynamic stress-strain curves,peak strain,peak stress and failure modes of shale are investigated.The results of the study indicate that the intermediate principal stress and the minor principal stress have the significant influence on the dynamic mechanical behaviors,although this effect decreases as the strain rate increases.The characteristics of compression-shear failure primarily occur in shale subjected to triaxial compression at high strain rates,which distinguishes it from the fragmentation characteristics observed in shale under dynamic uniaxial compression.Additionally,a numerical three-dimensional Split Hopkinson Pressure Bar(3D-SHPB),which is established by coupling PFC3D and FLAC3D methods,is validated to replicate the laboratory characteristics of shale.The dynamic mechanical characteristics of shale subjected to different confining stresses are systematically investigated by the coupling PFC3D and FLAC3D method.The numerical results are in good agreement with the experimental data.展开更多
This study delves into the effects of shield tunneling in complex coastal strata, focusing on how this constructionmethod impacts surface settlement, the mechanical properties of adjacent rock, and the deformation of ...This study delves into the effects of shield tunneling in complex coastal strata, focusing on how this constructionmethod impacts surface settlement, the mechanical properties of adjacent rock, and the deformation of tunnelsegments. It investigates the impact of shield construction on surface settlement, mechanical characteristics ofnearby rock, and segment deformation in complex coastal strata susceptible to construction disturbances. Utilizingthe Fuzhou Binhai express line as a case study, we developed a comprehensive numerical model using theABAQUS finite element software. The model incorporates factors such as face force, grouting pressure, jack force,and cutterhead torque. Its accuracy is validated against field monitoring data from engineering projects. Simulationswere conducted to analyze ground settlement and mechanical changes in adjacent rock and segments acrossfive soil layers. The results indicate that disturbances are most significant near the excavation zone of the shieldmachine, with a prominent settlement trough forming and stabilizing around 2.0–3.0 D from the excavation. Theexcavation face compresses the soil, inducing lateral expansion. As grouting pressure decreases, the segmentexperiences upward buoyancy. In mixed strata, softer layers witness increased cutting, intensifying disturbancesbut reducing segment floatation. These findings offer valuable insights for predicting settlements, ensuring segmentand rock safety, and optimizing tunneling parameters.展开更多
The urgent need to develop customized functional products only possible by 3D printing had realized when faced with the unavailability of medical devices like surgical instruments during the coronavirus-19 disease and...The urgent need to develop customized functional products only possible by 3D printing had realized when faced with the unavailability of medical devices like surgical instruments during the coronavirus-19 disease and the ondemand necessity to perform surgery during space missions.Biopolymers have recently been the most appropriate option for fabricating surgical instruments via 3D printing in terms of cheaper and faster processing.Among all 3D printing techniques,fused deposition modelling(FDM)is a low-cost and more rapid printing technique.This article proposes the fabrication of surgical instruments,namely,forceps and hemostat using the fused deposition modeling(FDM)process.Excellent mechanical properties are the only indicator to judge the quality of the functional parts.The mechanical properties of FDM-processed parts depend on various process parameters.These parameters are layer height,infill pattern,top/bottom pattern,number of top/bottom layers,infill density,flow,number of shells,printing temperature,build plate temperature,printing speed,and fan speed.Tensile strength and modulus of elasticity are chosen as evaluation indexes to ascertain the mechanical properties of polylactic acid(PLA)parts printed by FDM.The experiments have performed through Taguchi’s L27orthogonal array(OA).Variance analysis(ANOVA)ascertains the significance of the process parameters and their percent contributions to the evaluation indexes.Finally,as a multiobjective optimization technique,grey relational analysis(GRA)obtains an optimal set of FDM process parameters to fabricate the best parts with comprehensive mechanical properties.Scanning electron microscopy(SEM)examines the types of defects and strong bonding between rasters.The proposed research ensures the successful fabrication of functional surgical tools with substantial ultimate tensile strength(42.6 MPa)and modulus of elasticity(3274 MPa).展开更多
In this paper,the effects of different influencing factors and factor interaction on the compressive strength and permeability of recycled aggregate pervious concrete(RAPC)were studied based on the response surface me...In this paper,the effects of different influencing factors and factor interaction on the compressive strength and permeability of recycled aggregate pervious concrete(RAPC)were studied based on the response surface method(RSM).By selecting the maximum aggregate size,water cement ratio and target porosity as design variables,combined with laboratory tests and numerical analysis,the influences of three factors on the compressive strength and permeability coefficient of RAPC were revealed.The regression equation of compressive strength and permeability coefficient of recycled aggregate pervious concrete were established based on RSM,and the response surface model was optimized to determine the optimal ratio of RAPC under the conditions of meeting the mechanical and permeability properties.The results show that the mismatch item of the model is not significant,the model is credible,and the accuracy and reliability of the test are high,but the degree of uncorrelation between the test data and the model is not obvious.The sensitivity of the three factors to the compressive strength is water cement ratio>maximum coarse aggregate particle size>target porosity,and the sensitivity to the permeability coefficient is target porosity>maximum coarse aggregate particle size>water cement ratio.The absolute errors of the model prediction results and the model optimization results are 1.28 MPa and 0.19 mm/s,and the relative errors are 5.06%and 4.19%,respectively.With high accuracy,RSM can match the measured results of compressive strength and permeability coefficient of RAPC.展开更多
This study was conducted to investigate the effects of seedling raising modes on photosynthetic charactedsticsand grain yield under wheat straw returning. Four representative cultivars in Huaibei area were selected as...This study was conducted to investigate the effects of seedling raising modes on photosynthetic charactedsticsand grain yield under wheat straw returning. Four representative cultivars in Huaibei area were selected as test materials. By setting potted seedlings and carpet seedlings, the effects of different nursery meth- ods on the photosynthesis of rice at different growth stages in Huaibei area were investigated. Compared with carpet seedlings, the leaf area index of potted seedlings decreased at the maturation stage, but the dry weight of leaf shewed no significant difference.The SPAD of potted seedlings had an increasing trend after transplanting, but the SPAD increased differently according to cultivars. The net photosynthetic rate, stomatal conductance and transpiration rate of the leaves of pot seeding rice were significantly higher than those of carpet seedling rice on the 85^th d after transplanting. However, theintracellular CO2 concentration and water use efficiency of leaves had no significant differences between different 'treatments. The results indicate that the photosynthetic capacity of flag leaves of pot seedling rice is stronger in early and middle stages, but the decay rate of photosynthetic function is slightly faster than carpet seedling rice, which might be the main reason for the rice yield of potted seedlings having no remarkable difference from carpet seedlings.展开更多
Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,whic...Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,which makes it difficult to meet the requirements of ground control under complex conditions. As a new support form with high strength and rigidity, the confined concrete arch plays an important role in controlling the rock deformation under complex conditions. The section shape of the tunnel has an important impact on the mechanical properties and design of the support system. However, studies on the mechanical properties and influence mechanism of the new confined concrete arch are rarely reported. To this end, the mechanical properties of traditional U-shaped steel and new confined concrete arches are compared and comparative tests on arches of circular and straight-leg semicircular shapes in deep tunnels are conducted. A large mechanical testing system for underground engineering support structure is developed. The mechanical properties and influence mechanism of confined concrete arches with different section shapes under different loading modes and cross-section parameters are systematically studied. Test results show that the bearing capacity of the confined concrete arch is 2.10 times that of the U-shaped steel arch, and the bearing capacity of the circular confined concrete arch is 2.27 times that of the straight-leg semicircular arch. Among the various influencing factors and their engineering parameters,the lateral stress coefficient has the greatest impact on the bearing capacity of the confined concrete arch,followed by the steel pipe wall thickness, steel strength, and core concrete strength. Subsequently, the economic index of bearing capacity and cost is established, and the optimization design method for the confined concrete arch is proposed. Finally, this design method is applied to a high-stress tunnel under complex conditions, and the deformation of the surrounding rock is effectively controlled.展开更多
The use of aeolian sand(AS)as an aggregate to prepare coal mine cemented filling materials can resolve the problems of gangue shortage and excessive AS deposits.Owing to the lack of research on the mechanism of cement...The use of aeolian sand(AS)as an aggregate to prepare coal mine cemented filling materials can resolve the problems of gangue shortage and excessive AS deposits.Owing to the lack of research on the mechanism of cemented AS backfill(CASB),the response surface method(RSM)was adopted in this study to analyze the influence of ordinary Portland cement(PO)content(x_(1)),fly ash(FA)-AS(FA-AS)ratio(x_(2)),and concentration(x_(3))on the mechanical and microscopic properties of the CASB.The hydration characteristics and internal pore structure of the backfill were assessed through thermogravimetric/derivative thermogravimetric analysis,mercury intrusion porosimetry,and scanning electron microscopy.The RSM results show that the influence of each factor and interaction term on the response values is extremely significant(except x_(1)x_(3),which had no obvious effect on the 28 d strength).The uniaxial compressive strength(UCS)increased with the PO content,FA-AS ratio,and concentration.The interaction effects of x_(1)x_(2),x_(1)x_(3),and x_(2)x_(3) on the UCS at 3,7,and 28 d were analyzed.In terms of the influence of interaction items,an improvement in one factor promoted the strengthening effect of another factor.The enhancement mechanism of the curing time,PO content,and FA-AS ratio on the backfill was reflected in the increase in hydration products and pore structure optimization.By contrast,the enhancement mechanism of the concentration was mainly the pore structure optimization.The UCS was positively correlated with weight loss and micropore content but negatively correlated with the total porosity.The R^(2) value of the fitting function of the strength and weight loss,micropore content,and total porosity exceeded 0.9,which improved the characterization of the enhancement mechanism of the UCS based on the thermogravimetric analysis and pore structure.This work obtained that the influence rules and mechanisms of the PO,FA-AS,concentration,and interaction terms on the mechanical properties of the CASB provided a certain theoretical and engineering guidance for CASB filling.展开更多
Al7075-Cu composite joints were prepared by the squeeze overcast process.The effects of melt temperature,die temperature,and squeeze pressure on hardness and ultimate tensile strength(UTS)of squeeze overcast Al7075-Cu...Al7075-Cu composite joints were prepared by the squeeze overcast process.The effects of melt temperature,die temperature,and squeeze pressure on hardness and ultimate tensile strength(UTS)of squeeze overcast Al7075-Cu composite joints were studied.The experimental results depict that squeeze pressure is the most significant process parameter affecting the hardness and UTS.The optimal values of UTS(48 MPa)and hardness(76 HRB)are achieved at a melt temperature of 800℃,a die temperature of 250℃,and a squeeze pressure of 90 MPa.Scanning electron microscopy(SEM)shows that fractured surfaces show flatfaced morphology at the optimal experimental condition.Energy-dispersive spectroscopy(EDS)analysis depicts that the atomic weight percentage of Zn decreases with an increase in melt temperature and squeeze pressure.The optimal mechanical properties of the Al7075-Cu overcast joint were achieved at the Al2Cu eutectic phase due to the large number of copper atoms that dispersed into the aluminum melt during the solidification process and the formation of strong intermetallic bonds.Gray relational analysis integrated with the Taguchi method was used to develop an optimal set of control variables for multi-response parametric optimization.Confirmatory tests were performed to validate the effectiveness of the employed technique.The manufacturing of squeeze overcast Al7075-Cu composite joints at optimal process parameters delivers a great indication to acknowledge a new method for foundry practitioners to manufacture materials with superior mechanical properties.展开更多
Outwash deposit is a unique type of geological materials, and its features such as heterogeneity, discontinuity and nonlinearity determine the complexity of mechanical characteristics and failure mechanism. In this wo...Outwash deposit is a unique type of geological materials, and its features such as heterogeneity, discontinuity and nonlinearity determine the complexity of mechanical characteristics and failure mechanism. In this work, random meso-structure of outwash deposits was constructed by the technique of computer random simulation based on characteristics of its meso-structure in the statistical sense and some simplifications, and a series of large direct shear tests on numerical samples of outwash deposits with stone contents of 15%, 30%, 45% and 60% were conducted using the discrete element method to further investigate its mechanical characteristics and failure mechanism under external load. The results show that the deformation characteristics and shear strength of outwash deposits are to some extent improved with the increase of stone content, and the shear stress–shear displacement curves of outwash deposits show great differences at the post-peak stage due to the random spatial distribution and content of stones. From the mesoscopic view, normal directions of contacts between "soil" and "stone" particles undergo apparent deflection as the shear displacement continues during the shearing process, accompanying redistribution of the magnitude of contact forces during the shearing process. For outwash deposits, the shear zone formed after shear failure is an irregular stripe due to the movements of stones near the shear zone, and it expands gradually with the increase of stone content. In addition, there is an approximately linear relation between the mean increment of internal friction angle and the stone content lying between 30% and 60%, and a concave nonlinear relation between the mean increment of cohesion and stone content, which are in good agreement with the existing research results.展开更多
Based on the fact that the shear stress along anchorage segment is neither linearly nor uniformly distributed, the load transfer mechanism of the tension type anchor was studied and the mechanical characteristic of an...Based on the fact that the shear stress along anchorage segment is neither linearly nor uniformly distributed, the load transfer mechanism of the tension type anchor was studied and the mechanical characteristic of anchorage segment was analyzed. Shear stress?strain relationship of soil surrounding anchorage body was simplified into three-folding-lines model consisting of elastic phase, elasto-plastic phase and residual phase considering its softening characteristic. Meanwhile, shear displacement method that has been extensively used in the analysis of pile foundation was introduced. Based on elasto-plastic theory, the distributions of displacement, shear stress and axial force along the anchorage segment of tension type anchor were obtained, and the formula for calculating the elastic limit load was also developed accordingly. Finally, an example was given to discuss the variation of stress and displacement in the anchorage segment with the loads exerted on the anchor, and a program was worked out to calculate the anchor maximum bearing capacity. The influence of some parameters on the anchor bearing capacity was discussed, and effective anchorage length was obtained simultaneously. The results show that the shear stress first increases and then decreases and finally trends to the residual strength with increase of distance from bottom of the anchorage body, the displacement increases all the time with the increase of distance from bottom of the anchorage body, and the increase of velocity gradually becomes greater.展开更多
It is important to quantify the effect of the root diameter, the embedment length of the root and load speed on the soil-root interface mechanical properties for studying the root anchorage. The soilroot interface mec...It is important to quantify the effect of the root diameter, the embedment length of the root and load speed on the soil-root interface mechanical properties for studying the root anchorage. The soilroot interface mechanical properties can be obtained through the pullout force and root slippage curve(F-S curve). About 120 Pinus tabulaeformis single roots whose diameters ranged from 1 mm to 10 mm divided into 6 groups based on different root embedment length(50 mm, 100 mm and 150 mm) and different load velocity(10 mm·min^(-1), 50 mm·min^(-1), 100 mm·min^(-1) and 300 mm·min^(-1)) were investigated using the pullout method. This study aims to explore the mechanical properties of the soil-root interface in the real conditions using the pullout test method. The results showed two kinds of pullout test failure modes during the experimental process: breakage failure and pullout failure. The results showed that the roots were easier to be broken when the root diameter was smaller or the loading speed was larger. The relationship between the maximum anchorage force and root diameter was linear and the linearly dependent coefficient(R^2) was larger than 0.85. The anchorage force increased with the root embedment length. An increase of 10%^(-1)5% for the maximumanchorage force was found when load speed increased from 10 to 300 mm.min^(-1). The mean peak slippage of the root was from 13.81 to 35.79 mm when the load velocity varied from 10 to 300 mm.min^(-1). The study will be helpful for the design of slopes reinforced by vegetation and in predicting risk of uprooting of trees, and will have practical benefits for understanding the mechanism of landslide.展开更多
文摘Mechanical properties of semi-solid casting are dependent on multiple processing parameters,and improper processing parameters will not only reduce mean data but also increase variations.The present study investigated the impact of parameters in slurry preparation and heat treatment on the yield strength and ductility of T6 heat-treated A356 Al-Si alloy using rapid slurry forming(RSF)semi-solid casting.The focus was primarily on the robustness of mechanical properties based on Taguchi design method.By analyzing signal-to-noise ratio and minimum value calculated from-3S,the optimum slurry preparation parameters and heat treatment parameters were determined to be no quench,enthalpy exchange material(EEM)temperature of 140℃,EEM-to-melt ratio of 6mass%,stirring time of 18 s,solution heat treated at 520℃ for 2 h,and ageing heat treated at 190℃ for 6 h.In a small batch validation,the-3S yield strength and-3S elongation reach 256.1 MPa and 5.03% respectively,showing a satisfactory robustness.The hardness and microstructure of heat-treated samples with the best and worst properties were characterized to gain insight into the underlying mechanisms affecting the mean value and variations of mechanical properties.
基金supported by the National Natural Science Foundation of China under Grants Nos.52165013 and 51565021.
文摘The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques,and the 3D dynamic model of the rail-sleeper-ballast bed was constructed using the coupled discrete element method-multiflexible-body dynamics(DEM-MFBD)approach.We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests.It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles,and subsequently the number of contacts between them.As the depth of the granular ballast bed increases,the contact area becomes larger,and the contact force between the ballast particles gradually decreases.Under the action of the elastic USPs,the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced.The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom,and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed.
基金Funded by Project of Liaoning Provincial Department of Education (No.LZGD2019003)。
文摘The Young's modulus, shear modulus and Poisson's ratio of monolayer arsenene with different sizes were calculated by finite element method, so as to explore the influence of dimension and orientation on the mechanical properties of monolayer arsenene. The calculation results show that the small size has a significant effect on the mechanical properties of the monolayer arsenene. The smaller the size, the larger the Young's modulus and Poisson's ratio of the monolayer arsenene. The size change has a great influence on the Young's modulus of the arsenene handrail direction, and the Young's modulus of the zigzag direction is not sensitive to the size change. Similarly, the size change has a significant effect on the shear modulus of arsenene in the handrail direction, while the shear modulus in the zigzag direction has no significant effect on its size change. For the Poisson's ratio, the situation is just the opposite, and the effect of the size change on the Poisson's ratio of the arsenene zigzag direction is greater than that of the handrail direction.
基金This research was supported by the Department of Mining Engineering at the University of Utah.In addition,the lead author wishes to acknowledge the financial support received from the Talent Introduction Project,part of the Elite Program of Shandong University of Science and Technology(No.0104060540171).
文摘This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(XRD)-based DIP method effectively analyzed the mineral composition contents and spatial distributions of granite. During the particle flow code(PFC2D) model calibration phase, the numerical simulation exhibited that the uniaxial compressive strength(UCS) value, elastic modulus(E), and failure pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351 sets of numerical models and exploring the impacts of mineral composition on the mechanical properties of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile strength(σ_(t)), and E. In contrast, mica had a significant negative correlation for UCS, σ_(t), and E. The presence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased its ductility in UCS and direct tensile strength(DTS) tests. Varying contents of major mineral compositions in granite showed minor influence on the number of cracks in both UCS and DTS tests.
文摘Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and found that aggregate spalling was one of the main disease types of UTAO.A discrete element model of UTAO pavement structure was constructed to explore the meso-mechanical mechanism of UTAO damage under the influence of layer thickness,gradation,and bonding modulus.The experimental results show that,as the thickness of UTAO decreasing,the maximum value and the mean value of the contact force between all aggregate particles gradually increase,which leads to aggregates more prone to spalling.Compared with OGFC-5 UTAO,AC-5 UTAO presents smaller maximum and average values of all contact forces,and the loading pressure in AC-5 UTAO is fully diffused in the lateral direction.In addition,the increment of pavement modulus strengthens the overall force of aggregate particles inside UTAO,resulting in aggregate particles peeling off more easily.The increase of bonding modulus changes the position where the maximum value of the tangential force appears,whereas has no effect on the normal force.
基金Funded by the National Natural Science Foundation for Young Scholars of China(No.51302073)the Hubei Provincial Key Laboratory of Green Materials for Light IndustryHubei University of Technology(No.202307B07)。
文摘We described a method for obtaining fluorine-free Ti_(3)C_(2)Cl_(2)MXene phases by melting copper in CuCl_(2)instead of aluminum in Ti_(3)AlC_(2).XRD results show that when molten salt CuCl_(2)etches Ti_(3)AlC_(2),it forms an intermediate product Ti_(3)CuC_(2),and then reacts with Ti_(3)CuC_(2)to obtain Ti_(3)C_(2)Cl_(2).The reaction of Ti_(3)AlC_(2)and CuCl_(2)at a temperature of 800℃for 2 h to obtain Ti_(3)C_(2)Cl_(2)with an optimal lamellar structure is shown in SEM results.The pseudopotential plane-wave(PP-PW)method is used to calculate on the electronic structure.The etching mechanism is investigated by the total energies of each substance.The chemical reaction of Ti_(3)AlC_(2)and CuCl_(2)will first become Ti_(3)CuC_(2)and Cu,and then become Ti_(3)C_(2)Cl_(2)during the Lewis acid etching process,which are consistent with the experimental results.
基金Project supported by the Natural Science Foundation of Shandong Province,China (Grant No.ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos.ZR2022LLZ012 and ZR2021LLZ001)。
文摘Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models.
基金financially supported from the National Natural Science Foundation of China(No.U23A20605)the University Synergy Innovation Program of Anhui Province,China(No.GXXT-2020-072)+2 种基金Anhui Jieqing Project,China(No.2208085J19)Anhui Graduate Innovation and Entrepreneurship Practice Project,China(No.2022cxcysj090)China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202202).
文摘A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare MSS/wood-plastic composites(MSS/WPCs)by replacing talcum powder(TP).The composites were fabricated through melting blending and hot pressing.Their mechanical and combustion properties,which comprise heat release,smoke release,and thermal stability,were systematically investigated.MSS can improve the mechanical strength of the composites through grafting reactions between wood powder and thermoplastics.Notably,MSS/WPC#50(16wt%MSS)with an MSS-to-TP mass ratio of 1:1 exhibited optimal comprehensive performance.Compared with those of WPC#0 without MSS,the tensile,flexural,and impact strengths of MSS/WPC#50 were increased by 18.5%,12.8%,and 18.0%,respectively.Moreover,the MSS/WPC#50 sample achieved the highest limited oxygen index of 22.5%,the highest vertical burning rating at the V-1 level,and the lowest horizontal burning rate at 44.2 mm/min.The formation of a dense and stable char layer led to improved thermal stability and a considerable reduction in heat and smoke releases of MSS/WPC#50.However,the partial replacement of TP with MSS slightly compromised the mechanical and flame-retardant properties,possibly due to the weak grafting caused by SS powder agglomeration.These findings suggest the suitability of MSS/WPCs for high-value-added applications as decorative panels indoors or outdoors.
基金the project supported by the National Natural Science Foundation of China(Grant No.52372425)the Fundamental Research Funds for the Central Universities(Science and technology leading talent team project)(Grant No.2022JBXT010).
文摘Laying the under-sleeper pad(USP)is one of the effective measures commonly used to delay ballast degradation and reduce maintenance workload.To explore the impact of application of the USP on the dynamic and static mechanical behavior of the ballast track in the heavy-haul railway system,numerical simulation models of the ballast bed with USP and without USP are presented in this paper by using the discrete element method(DEM)-multi-flexible body dynamic(MFBD)coupling analysis method.The ballast bed support stiffness test and dynamic displacement tests were carried out on the actual operation of a heavy-haul railway line to verify the validity of the models.The results show that using the USP results in a 43.01%reduction in the ballast bed support stiffness and achieves a more uniform distribution of track loads on the sleepers.It effectively reduces the load borne by the sleeper directly under the wheel load,with a 7.89%reduction in the pressure on the sleeper.Furthermore,the laying of the USP changes the lateral resistance sharing ratio of the ballast bed,significantly reducing the stress level of the ballast bed under train loads,with an average stress reduction of 42.19 kPa.It also reduces the plastic displacement of ballast particles and lowers the peak value of rotational angular velocity by about 50%to 70%,which is conducive to slowing down ballast bed settlement deformation and reducing maintenance costs.In summary,laying the USP has a potential value in enhancing the stability and extending the lifespan of the ballast bed in heavy-haul railway systems.
基金supported by the National Natural Science Foundation of China(Nos.51839009 and 52027814)the Natural Science Foundation of Hubei Province(No.2023AFB589).
文摘High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic mechanical properties of shale.Dynamic experiments on shale subjected to true triaxial compression at different strain rates are first conducted in this research.The dynamic stress-strain curves,peak strain,peak stress and failure modes of shale are investigated.The results of the study indicate that the intermediate principal stress and the minor principal stress have the significant influence on the dynamic mechanical behaviors,although this effect decreases as the strain rate increases.The characteristics of compression-shear failure primarily occur in shale subjected to triaxial compression at high strain rates,which distinguishes it from the fragmentation characteristics observed in shale under dynamic uniaxial compression.Additionally,a numerical three-dimensional Split Hopkinson Pressure Bar(3D-SHPB),which is established by coupling PFC3D and FLAC3D methods,is validated to replicate the laboratory characteristics of shale.The dynamic mechanical characteristics of shale subjected to different confining stresses are systematically investigated by the coupling PFC3D and FLAC3D method.The numerical results are in good agreement with the experimental data.
文摘This study delves into the effects of shield tunneling in complex coastal strata, focusing on how this constructionmethod impacts surface settlement, the mechanical properties of adjacent rock, and the deformation of tunnelsegments. It investigates the impact of shield construction on surface settlement, mechanical characteristics ofnearby rock, and segment deformation in complex coastal strata susceptible to construction disturbances. Utilizingthe Fuzhou Binhai express line as a case study, we developed a comprehensive numerical model using theABAQUS finite element software. The model incorporates factors such as face force, grouting pressure, jack force,and cutterhead torque. Its accuracy is validated against field monitoring data from engineering projects. Simulationswere conducted to analyze ground settlement and mechanical changes in adjacent rock and segments acrossfive soil layers. The results indicate that disturbances are most significant near the excavation zone of the shieldmachine, with a prominent settlement trough forming and stabilizing around 2.0–3.0 D from the excavation. Theexcavation face compresses the soil, inducing lateral expansion. As grouting pressure decreases, the segmentexperiences upward buoyancy. In mixed strata, softer layers witness increased cutting, intensifying disturbancesbut reducing segment floatation. These findings offer valuable insights for predicting settlements, ensuring segmentand rock safety, and optimizing tunneling parameters.
文摘The urgent need to develop customized functional products only possible by 3D printing had realized when faced with the unavailability of medical devices like surgical instruments during the coronavirus-19 disease and the ondemand necessity to perform surgery during space missions.Biopolymers have recently been the most appropriate option for fabricating surgical instruments via 3D printing in terms of cheaper and faster processing.Among all 3D printing techniques,fused deposition modelling(FDM)is a low-cost and more rapid printing technique.This article proposes the fabrication of surgical instruments,namely,forceps and hemostat using the fused deposition modeling(FDM)process.Excellent mechanical properties are the only indicator to judge the quality of the functional parts.The mechanical properties of FDM-processed parts depend on various process parameters.These parameters are layer height,infill pattern,top/bottom pattern,number of top/bottom layers,infill density,flow,number of shells,printing temperature,build plate temperature,printing speed,and fan speed.Tensile strength and modulus of elasticity are chosen as evaluation indexes to ascertain the mechanical properties of polylactic acid(PLA)parts printed by FDM.The experiments have performed through Taguchi’s L27orthogonal array(OA).Variance analysis(ANOVA)ascertains the significance of the process parameters and their percent contributions to the evaluation indexes.Finally,as a multiobjective optimization technique,grey relational analysis(GRA)obtains an optimal set of FDM process parameters to fabricate the best parts with comprehensive mechanical properties.Scanning electron microscopy(SEM)examines the types of defects and strong bonding between rasters.The proposed research ensures the successful fabrication of functional surgical tools with substantial ultimate tensile strength(42.6 MPa)and modulus of elasticity(3274 MPa).
基金supported by the Jiangsu Water Conservancy Science and Technology Project of China(2016036).
文摘In this paper,the effects of different influencing factors and factor interaction on the compressive strength and permeability of recycled aggregate pervious concrete(RAPC)were studied based on the response surface method(RSM).By selecting the maximum aggregate size,water cement ratio and target porosity as design variables,combined with laboratory tests and numerical analysis,the influences of three factors on the compressive strength and permeability coefficient of RAPC were revealed.The regression equation of compressive strength and permeability coefficient of recycled aggregate pervious concrete were established based on RSM,and the response surface model was optimized to determine the optimal ratio of RAPC under the conditions of meeting the mechanical and permeability properties.The results show that the mismatch item of the model is not significant,the model is credible,and the accuracy and reliability of the test are high,but the degree of uncorrelation between the test data and the model is not obvious.The sensitivity of the three factors to the compressive strength is water cement ratio>maximum coarse aggregate particle size>target porosity,and the sensitivity to the permeability coefficient is target porosity>maximum coarse aggregate particle size>water cement ratio.The absolute errors of the model prediction results and the model optimization results are 1.28 MPa and 0.19 mm/s,and the relative errors are 5.06%and 4.19%,respectively.With high accuracy,RSM can match the measured results of compressive strength and permeability coefficient of RAPC.
基金Supported by Jiangsu Provincial Science and Technology Demonstration Project(BE2015312)National Rice Industry Technical System(CARS-01-59)~~
文摘This study was conducted to investigate the effects of seedling raising modes on photosynthetic charactedsticsand grain yield under wheat straw returning. Four representative cultivars in Huaibei area were selected as test materials. By setting potted seedlings and carpet seedlings, the effects of different nursery meth- ods on the photosynthesis of rice at different growth stages in Huaibei area were investigated. Compared with carpet seedlings, the leaf area index of potted seedlings decreased at the maturation stage, but the dry weight of leaf shewed no significant difference.The SPAD of potted seedlings had an increasing trend after transplanting, but the SPAD increased differently according to cultivars. The net photosynthetic rate, stomatal conductance and transpiration rate of the leaves of pot seeding rice were significantly higher than those of carpet seedling rice on the 85^th d after transplanting. However, theintracellular CO2 concentration and water use efficiency of leaves had no significant differences between different 'treatments. The results indicate that the photosynthetic capacity of flag leaves of pot seedling rice is stronger in early and middle stages, but the decay rate of photosynthetic function is slightly faster than carpet seedling rice, which might be the main reason for the rice yield of potted seedlings having no remarkable difference from carpet seedlings.
基金supported by the National Natural Science Foundation of China (Nos. 42277174, 42077267, and 52074164)the Natural Science Foundation of Shandong Province, China (No. ZR2020JQ23)+2 种基金Major Scientific and Technological Innovation Project of Shandong Province, China (No. 2019SDZY04)the Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program, China (No. 2019KJG013)the opening project of State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology (No. KFJJ21-02Z)。
文摘Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,which makes it difficult to meet the requirements of ground control under complex conditions. As a new support form with high strength and rigidity, the confined concrete arch plays an important role in controlling the rock deformation under complex conditions. The section shape of the tunnel has an important impact on the mechanical properties and design of the support system. However, studies on the mechanical properties and influence mechanism of the new confined concrete arch are rarely reported. To this end, the mechanical properties of traditional U-shaped steel and new confined concrete arches are compared and comparative tests on arches of circular and straight-leg semicircular shapes in deep tunnels are conducted. A large mechanical testing system for underground engineering support structure is developed. The mechanical properties and influence mechanism of confined concrete arches with different section shapes under different loading modes and cross-section parameters are systematically studied. Test results show that the bearing capacity of the confined concrete arch is 2.10 times that of the U-shaped steel arch, and the bearing capacity of the circular confined concrete arch is 2.27 times that of the straight-leg semicircular arch. Among the various influencing factors and their engineering parameters,the lateral stress coefficient has the greatest impact on the bearing capacity of the confined concrete arch,followed by the steel pipe wall thickness, steel strength, and core concrete strength. Subsequently, the economic index of bearing capacity and cost is established, and the optimization design method for the confined concrete arch is proposed. Finally, this design method is applied to a high-stress tunnel under complex conditions, and the deformation of the surrounding rock is effectively controlled.
基金financially supported by the National Natural Science Foundation of China (NO.52174095)。
文摘The use of aeolian sand(AS)as an aggregate to prepare coal mine cemented filling materials can resolve the problems of gangue shortage and excessive AS deposits.Owing to the lack of research on the mechanism of cemented AS backfill(CASB),the response surface method(RSM)was adopted in this study to analyze the influence of ordinary Portland cement(PO)content(x_(1)),fly ash(FA)-AS(FA-AS)ratio(x_(2)),and concentration(x_(3))on the mechanical and microscopic properties of the CASB.The hydration characteristics and internal pore structure of the backfill were assessed through thermogravimetric/derivative thermogravimetric analysis,mercury intrusion porosimetry,and scanning electron microscopy.The RSM results show that the influence of each factor and interaction term on the response values is extremely significant(except x_(1)x_(3),which had no obvious effect on the 28 d strength).The uniaxial compressive strength(UCS)increased with the PO content,FA-AS ratio,and concentration.The interaction effects of x_(1)x_(2),x_(1)x_(3),and x_(2)x_(3) on the UCS at 3,7,and 28 d were analyzed.In terms of the influence of interaction items,an improvement in one factor promoted the strengthening effect of another factor.The enhancement mechanism of the curing time,PO content,and FA-AS ratio on the backfill was reflected in the increase in hydration products and pore structure optimization.By contrast,the enhancement mechanism of the concentration was mainly the pore structure optimization.The UCS was positively correlated with weight loss and micropore content but negatively correlated with the total porosity.The R^(2) value of the fitting function of the strength and weight loss,micropore content,and total porosity exceeded 0.9,which improved the characterization of the enhancement mechanism of the UCS based on the thermogravimetric analysis and pore structure.This work obtained that the influence rules and mechanisms of the PO,FA-AS,concentration,and interaction terms on the mechanical properties of the CASB provided a certain theoretical and engineering guidance for CASB filling.
文摘Al7075-Cu composite joints were prepared by the squeeze overcast process.The effects of melt temperature,die temperature,and squeeze pressure on hardness and ultimate tensile strength(UTS)of squeeze overcast Al7075-Cu composite joints were studied.The experimental results depict that squeeze pressure is the most significant process parameter affecting the hardness and UTS.The optimal values of UTS(48 MPa)and hardness(76 HRB)are achieved at a melt temperature of 800℃,a die temperature of 250℃,and a squeeze pressure of 90 MPa.Scanning electron microscopy(SEM)shows that fractured surfaces show flatfaced morphology at the optimal experimental condition.Energy-dispersive spectroscopy(EDS)analysis depicts that the atomic weight percentage of Zn decreases with an increase in melt temperature and squeeze pressure.The optimal mechanical properties of the Al7075-Cu overcast joint were achieved at the Al2Cu eutectic phase due to the large number of copper atoms that dispersed into the aluminum melt during the solidification process and the formation of strong intermetallic bonds.Gray relational analysis integrated with the Taguchi method was used to develop an optimal set of control variables for multi-response parametric optimization.Confirmatory tests were performed to validate the effectiveness of the employed technique.The manufacturing of squeeze overcast Al7075-Cu composite joints at optimal process parameters delivers a great indication to acknowledge a new method for foundry practitioners to manufacture materials with superior mechanical properties.
基金Project(2011CB013504) supported by the National Basic Research Program(973 Program)of ChinaProject(2013BAB06B01) supported by the National Science&Technology Pillar Program during the Twelfth Five-year Plan Period+2 种基金Projects(11772118,51479049,51709282) supported by the National Natural Science Foundation of ChinaProject(2017M620838) supported by the Postdoctoral Science Foundation of ChinaProject(487237) supported by the Natural Sciences and Engineering Research Council of Canada
文摘Outwash deposit is a unique type of geological materials, and its features such as heterogeneity, discontinuity and nonlinearity determine the complexity of mechanical characteristics and failure mechanism. In this work, random meso-structure of outwash deposits was constructed by the technique of computer random simulation based on characteristics of its meso-structure in the statistical sense and some simplifications, and a series of large direct shear tests on numerical samples of outwash deposits with stone contents of 15%, 30%, 45% and 60% were conducted using the discrete element method to further investigate its mechanical characteristics and failure mechanism under external load. The results show that the deformation characteristics and shear strength of outwash deposits are to some extent improved with the increase of stone content, and the shear stress–shear displacement curves of outwash deposits show great differences at the post-peak stage due to the random spatial distribution and content of stones. From the mesoscopic view, normal directions of contacts between "soil" and "stone" particles undergo apparent deflection as the shear displacement continues during the shearing process, accompanying redistribution of the magnitude of contact forces during the shearing process. For outwash deposits, the shear zone formed after shear failure is an irregular stripe due to the movements of stones near the shear zone, and it expands gradually with the increase of stone content. In addition, there is an approximately linear relation between the mean increment of internal friction angle and the stone content lying between 30% and 60%, and a concave nonlinear relation between the mean increment of cohesion and stone content, which are in good agreement with the existing research results.
基金Project(20050532021) supported by the Research Fund for the Doctoral Program of Higher Education
文摘Based on the fact that the shear stress along anchorage segment is neither linearly nor uniformly distributed, the load transfer mechanism of the tension type anchor was studied and the mechanical characteristic of anchorage segment was analyzed. Shear stress?strain relationship of soil surrounding anchorage body was simplified into three-folding-lines model consisting of elastic phase, elasto-plastic phase and residual phase considering its softening characteristic. Meanwhile, shear displacement method that has been extensively used in the analysis of pile foundation was introduced. Based on elasto-plastic theory, the distributions of displacement, shear stress and axial force along the anchorage segment of tension type anchor were obtained, and the formula for calculating the elastic limit load was also developed accordingly. Finally, an example was given to discuss the variation of stress and displacement in the anchorage segment with the loads exerted on the anchor, and a program was worked out to calculate the anchor maximum bearing capacity. The influence of some parameters on the anchor bearing capacity was discussed, and effective anchorage length was obtained simultaneously. The results show that the shear stress first increases and then decreases and finally trends to the residual strength with increase of distance from bottom of the anchorage body, the displacement increases all the time with the increase of distance from bottom of the anchorage body, and the increase of velocity gradually becomes greater.
基金supported by the Fundamental Research Funds for the Central Universities(No.YX2010-20)the Open Projects Foundation of Key Laboratory of Soil and Water Conservation & Desertification Combat (Beijing ForestryUniversity), Ministry of Education of P.R. China (No.201002) the National Natural Science Foundation of China (No. 31570708, No.30901162)
文摘It is important to quantify the effect of the root diameter, the embedment length of the root and load speed on the soil-root interface mechanical properties for studying the root anchorage. The soilroot interface mechanical properties can be obtained through the pullout force and root slippage curve(F-S curve). About 120 Pinus tabulaeformis single roots whose diameters ranged from 1 mm to 10 mm divided into 6 groups based on different root embedment length(50 mm, 100 mm and 150 mm) and different load velocity(10 mm·min^(-1), 50 mm·min^(-1), 100 mm·min^(-1) and 300 mm·min^(-1)) were investigated using the pullout method. This study aims to explore the mechanical properties of the soil-root interface in the real conditions using the pullout test method. The results showed two kinds of pullout test failure modes during the experimental process: breakage failure and pullout failure. The results showed that the roots were easier to be broken when the root diameter was smaller or the loading speed was larger. The relationship between the maximum anchorage force and root diameter was linear and the linearly dependent coefficient(R^2) was larger than 0.85. The anchorage force increased with the root embedment length. An increase of 10%^(-1)5% for the maximumanchorage force was found when load speed increased from 10 to 300 mm.min^(-1). The mean peak slippage of the root was from 13.81 to 35.79 mm when the load velocity varied from 10 to 300 mm.min^(-1). The study will be helpful for the design of slopes reinforced by vegetation and in predicting risk of uprooting of trees, and will have practical benefits for understanding the mechanism of landslide.