P2-type sodium layered oxide cathode (Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)P2-NNMO) has attracted great attention as a promising cathode material for sodium ion batteries because of its high specific capacity. However, this m...P2-type sodium layered oxide cathode (Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)P2-NNMO) has attracted great attention as a promising cathode material for sodium ion batteries because of its high specific capacity. However, this material suffers from a rapid capacity fade during high-voltage cycling. Several mechanisms have been proposed to explain the capacity fade, including intragranular fracture caused by the P2-O2 phase transion, surface structural change, and irreversible lattice oxygen release. Here we systematically investigated the morphological, structural, and chemical changes of P2-NNMO during high-voltage cycling using a variety of characterization techniques. It was found that the lattice distortion and crystal-plane buckling induced by the P2-O2 phase transition slowed down the Na-ion transport in the bulk and hindered the extraction of the Na ions. The sluggish kinetics was the main reason in reducing the accessible capacity while other interfacial degradation mechanisms played minor roles. Our results not only enabled a more complete understanding of the capacity-fading mechanism of P2-NNMO but also revealed the underlying correlations between lattice doping and the moderately improved cycle performance.展开更多
The ever-increasing future demands of electrification and grid storage have spurred continued research to develop rechargeable battery chemistries for reliable energy storage[1].Beyond current lithium-ion batteries,li...The ever-increasing future demands of electrification and grid storage have spurred continued research to develop rechargeable battery chemistries for reliable energy storage[1].Beyond current lithium-ion batteries,lithium–sulfur battery represents a promising system due to its high energy density(2600 Wh kg^(-1))and low material cost[2].展开更多
Water injection for oil displacement is one of the most effective ways to develop fractured-vuggy carbonate reservoirs.With the increase in the number of rounds of water injection,the development effect gradually fail...Water injection for oil displacement is one of the most effective ways to develop fractured-vuggy carbonate reservoirs.With the increase in the number of rounds of water injection,the development effect gradually fails.The emergence of high-pressure capacity expansion and water injection technology allows increased production from old wells.Although high-pressure capacity expansion and water injection technology has been implemented in practice for nearly 10 years in fractured-vuggy reservoirs,its mechanism remains unclear,and the water injection curve is not apparent.In the past,evaluating its effect could only be done by measuring the injection-production volume.In this study,we analyze the mechanism of high-pressure capacity expansion and water injection.We propose a fluid exchange index for high-pressure capacity expansion and water injection and establish a discrete model suitable for high-pressure capacity expansion and water injection curves in fractured-vuggy reservoirs.We propose the following mechanisms:replenishing energy,increasing energy,replacing energy,and releasing energy.The above mechanisms can be identified by the high-pressure capacity expansion and water injection curve of the well HA6X in the Halahatang Oilfield in the Tarim Basin.By solving the basic model,the relative errors of Reservoirs I and II are found to be 1.9%and 1.5%,respectively,and the application of field examples demonstrates that our proposed high-pressure capacity expansion and water injection indicator curve is reasonable and reliable.This research can provide theoretical support for high-pressure capacity expansion and water injection technology in fracture-vuggy carbonate reservoirs.展开更多
The structure design for high ratio of carrying capacity to deadweight is one of the challenges for the bionic mechanism,while the problem concerning high carrying capacity has not yet be solved for the existing shoul...The structure design for high ratio of carrying capacity to deadweight is one of the challenges for the bionic mechanism,while the problem concerning high carrying capacity has not yet be solved for the existing shoulder complex.A new type biomimetic shoulder complex,which adopts 3-PSS/S(P for prismatic pair,S for spherical pair) spherical parallel mechanism(SPM),is proposed.The static equilibrium equations of each component are established by using the vector method and the equations for constrain forces with certain load are solved.Then the constrain force on the middle limb and that on the side limbs are compared in order to verify the unloading performance of the mechanism.In addition,the prototype mechanism of the shoulder complex is developed,and the force feedback experiment is conducted to verify the static analysis,which indicates that the middle limb suffers most of the external force and the effect of mechanics unloading is achieved.The 3-PSS/S spherical parallel mechanism is presented for the shoulder complex,and the realization of mechanics unloading is benefit for the improvement of the carrying capacity of the shoulder complex.展开更多
A series of investigations were conducted to study the bearing capacity and load transfer mechanism of stiffened deep cement mixed (SDCM) pile. Laboratory tests including six specimens were conducted to investigate ...A series of investigations were conducted to study the bearing capacity and load transfer mechanism of stiffened deep cement mixed (SDCM) pile. Laboratory tests including six specimens were conducted to investigate the frictional resistance between the concrete core and the cementsoil. Two model piles and twenty-four full-scale piles were tested to examine the bearing behavior of single pile. Laboratory and model tests results indicate that the cohesive strength is large enough to ensure the interaction between core pile and the outer cement-soil. The full-scale test results show that the SDCM piles exhibit similar bearing behavior to bored and cast-in-place concrete piles. In general, with the rational composite structure the SDCM piles can transmit the applied load effectively, and due to the addition of the stiffer core, the SDCM piles possess high bearing capacity. Based on the findings of these experimental investigations and theoretical analysi , a practical design method is developed to predict the vertical bearing capacity of SDCM pile.展开更多
In this work, a bimetallic zeolitic imidazolate framework (ZIF) CoZn-ZIF was synthesized via a facile sol-vothermal approach and applied in lithiumion batteries. The as-prepared CoZn-ZIF shows a high reversible capa...In this work, a bimetallic zeolitic imidazolate framework (ZIF) CoZn-ZIF was synthesized via a facile sol-vothermal approach and applied in lithiumion batteries. The as-prepared CoZn-ZIF shows a high reversible capacity of 605.8 mA b g-i at a current density of 100 mA g^-1, far beyond the performance of the corresponding monometallic Co-ZIF- 67 and Zn-ZIF-8. Ex-situ synchrotron soft X-ray absorption spectroscopy, X-ray diffraction, and electron paramagnetic resonance techniques were employed to explore the Li^storage mechanism. The superior performance of CoZn-ZIF over Co-ZIF-67 and Zn-ZIF-8 could be mainly attributed to lithiation and delithiation of nitrogen atoms, accompanied by the breakage and recoordination of metal nitrogen bond. Morever, a few metal nitrogen bonds without recoordination will lead to the amorphization of CoZn-ZIF and the formation of few nitrogen radicals.展开更多
Rechargeable metal-sulfur batteries with the use of low-cost sulfur cathodes and varying choice of metal anodes(Li,Na,K,Ca,Mg,and Al)represent diverse energy storage solutions to satisfy different application requirem...Rechargeable metal-sulfur batteries with the use of low-cost sulfur cathodes and varying choice of metal anodes(Li,Na,K,Ca,Mg,and Al)represent diverse energy storage solutions to satisfy different application requirements.In comparison to the highly-regarded lithium-sulfur batteries,the use of nonlithium-metal anodes in metal-sulfur batteries offers multiple advantages in terms of abundance,cost,and volumetric energy density.Although with the same sulfur cathode,metal-sulfur batteries show considerably differences in the electrochemical reaction pathway and capacity fading mechanism.Herein,we provide an overview of correlations and differences in metal-sulfur batteries,highlighting the knowledge and experience that can be transplanted from lithium-sulfur to other metal-sulfur batteries.We first discuss the historical development and the electrochemical reaction mechanism of various metal-sulfur batteries.This is then followed by an analysis of key challenges of metal-sulfur batteries including polysulfide shutting,cathode passivation,and anode stability.Finally,a short perspective is presented about the possible future development of metal-sulfur batteries.展开更多
基金financial support from the National Natural Science Foundation of China (21938005, 21573147, 22005190, 22008154, 21872163)the Science & Technology Commission of Shanghai Municipality, the Natural Science Foundation of Shanghai (19DZ1205500, 19ZR1424600, 19ZR1475100)the Sichuan Science and Technology Program (2021JDRC0015 to L.S.L)。
文摘P2-type sodium layered oxide cathode (Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)P2-NNMO) has attracted great attention as a promising cathode material for sodium ion batteries because of its high specific capacity. However, this material suffers from a rapid capacity fade during high-voltage cycling. Several mechanisms have been proposed to explain the capacity fade, including intragranular fracture caused by the P2-O2 phase transion, surface structural change, and irreversible lattice oxygen release. Here we systematically investigated the morphological, structural, and chemical changes of P2-NNMO during high-voltage cycling using a variety of characterization techniques. It was found that the lattice distortion and crystal-plane buckling induced by the P2-O2 phase transition slowed down the Na-ion transport in the bulk and hindered the extraction of the Na ions. The sluggish kinetics was the main reason in reducing the accessible capacity while other interfacial degradation mechanisms played minor roles. Our results not only enabled a more complete understanding of the capacity-fading mechanism of P2-NNMO but also revealed the underlying correlations between lattice doping and the moderately improved cycle performance.
基金supported by the Agency for Science,Technology and Research(Central Research Fund Award)。
文摘The ever-increasing future demands of electrification and grid storage have spurred continued research to develop rechargeable battery chemistries for reliable energy storage[1].Beyond current lithium-ion batteries,lithium–sulfur battery represents a promising system due to its high energy density(2600 Wh kg^(-1))and low material cost[2].
基金supported by the China Postdoctoral Science Foundation(No.M2019650965)Major R&D Plan of Sichuan Province(No.2020YFQ0034)the National Natural Science Fund Projects(Grant No.51804253).
文摘Water injection for oil displacement is one of the most effective ways to develop fractured-vuggy carbonate reservoirs.With the increase in the number of rounds of water injection,the development effect gradually fails.The emergence of high-pressure capacity expansion and water injection technology allows increased production from old wells.Although high-pressure capacity expansion and water injection technology has been implemented in practice for nearly 10 years in fractured-vuggy reservoirs,its mechanism remains unclear,and the water injection curve is not apparent.In the past,evaluating its effect could only be done by measuring the injection-production volume.In this study,we analyze the mechanism of high-pressure capacity expansion and water injection.We propose a fluid exchange index for high-pressure capacity expansion and water injection and establish a discrete model suitable for high-pressure capacity expansion and water injection curves in fractured-vuggy reservoirs.We propose the following mechanisms:replenishing energy,increasing energy,replacing energy,and releasing energy.The above mechanisms can be identified by the high-pressure capacity expansion and water injection curve of the well HA6X in the Halahatang Oilfield in the Tarim Basin.By solving the basic model,the relative errors of Reservoirs I and II are found to be 1.9%and 1.5%,respectively,and the application of field examples demonstrates that our proposed high-pressure capacity expansion and water injection indicator curve is reasonable and reliable.This research can provide theoretical support for high-pressure capacity expansion and water injection technology in fracture-vuggy carbonate reservoirs.
基金Supported by National Natural Science Foundation of China(Grant No.51275443)Key Project of Ministry of Education of China(Grant No.212012)+2 种基金Hebei Provincial Natural Science Foundation of China(Grant No.E2012203034)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20111333120004)Research Fund for Outstanding Youth in Higher Education Institutions of Hebei Province,China(Grant No.Y2011114)
文摘The structure design for high ratio of carrying capacity to deadweight is one of the challenges for the bionic mechanism,while the problem concerning high carrying capacity has not yet be solved for the existing shoulder complex.A new type biomimetic shoulder complex,which adopts 3-PSS/S(P for prismatic pair,S for spherical pair) spherical parallel mechanism(SPM),is proposed.The static equilibrium equations of each component are established by using the vector method and the equations for constrain forces with certain load are solved.Then the constrain force on the middle limb and that on the side limbs are compared in order to verify the unloading performance of the mechanism.In addition,the prototype mechanism of the shoulder complex is developed,and the force feedback experiment is conducted to verify the static analysis,which indicates that the middle limb suffers most of the external force and the effect of mechanics unloading is achieved.The 3-PSS/S spherical parallel mechanism is presented for the shoulder complex,and the realization of mechanics unloading is benefit for the improvement of the carrying capacity of the shoulder complex.
文摘A series of investigations were conducted to study the bearing capacity and load transfer mechanism of stiffened deep cement mixed (SDCM) pile. Laboratory tests including six specimens were conducted to investigate the frictional resistance between the concrete core and the cementsoil. Two model piles and twenty-four full-scale piles were tested to examine the bearing behavior of single pile. Laboratory and model tests results indicate that the cohesive strength is large enough to ensure the interaction between core pile and the outer cement-soil. The full-scale test results show that the SDCM piles exhibit similar bearing behavior to bored and cast-in-place concrete piles. In general, with the rational composite structure the SDCM piles can transmit the applied load effectively, and due to the addition of the stiffer core, the SDCM piles possess high bearing capacity. Based on the findings of these experimental investigations and theoretical analysi , a practical design method is developed to predict the vertical bearing capacity of SDCM pile.
基金supported by the National Natural Science Foundation of China for Excellent Young Scholars(21522303)the National Natural Science Foundation of China(21373086)+3 种基金the Basic Research Project of Shanghai Science and Technology Committee(14JC1491000)the Large Instruments Open Foundation of East China Normal Universitythe National Key Basic Research Program of China(2013CB921800)the National High Technology Research and Development Program of China(2014AA123401)
文摘In this work, a bimetallic zeolitic imidazolate framework (ZIF) CoZn-ZIF was synthesized via a facile sol-vothermal approach and applied in lithiumion batteries. The as-prepared CoZn-ZIF shows a high reversible capacity of 605.8 mA b g-i at a current density of 100 mA g^-1, far beyond the performance of the corresponding monometallic Co-ZIF- 67 and Zn-ZIF-8. Ex-situ synchrotron soft X-ray absorption spectroscopy, X-ray diffraction, and electron paramagnetic resonance techniques were employed to explore the Li^storage mechanism. The superior performance of CoZn-ZIF over Co-ZIF-67 and Zn-ZIF-8 could be mainly attributed to lithiation and delithiation of nitrogen atoms, accompanied by the breakage and recoordination of metal nitrogen bond. Morever, a few metal nitrogen bonds without recoordination will lead to the amorphization of CoZn-ZIF and the formation of few nitrogen radicals.
基金Joint International Research Laboratory of Carbon-based Functional Materials and Devices111 Project+1 种基金Collaborative Innovation Center of Suzhou Nano Science and TechnologyNational Natural Science Foundation of China,Grant/Award Numbers:U2002213,51972219。
文摘Rechargeable metal-sulfur batteries with the use of low-cost sulfur cathodes and varying choice of metal anodes(Li,Na,K,Ca,Mg,and Al)represent diverse energy storage solutions to satisfy different application requirements.In comparison to the highly-regarded lithium-sulfur batteries,the use of nonlithium-metal anodes in metal-sulfur batteries offers multiple advantages in terms of abundance,cost,and volumetric energy density.Although with the same sulfur cathode,metal-sulfur batteries show considerably differences in the electrochemical reaction pathway and capacity fading mechanism.Herein,we provide an overview of correlations and differences in metal-sulfur batteries,highlighting the knowledge and experience that can be transplanted from lithium-sulfur to other metal-sulfur batteries.We first discuss the historical development and the electrochemical reaction mechanism of various metal-sulfur batteries.This is then followed by an analysis of key challenges of metal-sulfur batteries including polysulfide shutting,cathode passivation,and anode stability.Finally,a short perspective is presented about the possible future development of metal-sulfur batteries.