Metal-tip/Pr0.7Ca0.3MnO3/Pt devices possess two types of I-V hysteresis: clockwise vs counter clockwise depending on the tip materials. The criteria for categorization of these two types of devices can be simply base...Metal-tip/Pr0.7Ca0.3MnO3/Pt devices possess two types of I-V hysteresis: clockwise vs counter clockwise depending on the tip materials. The criteria for categorization of these two types of devices can be simply based on whether the Gibbs free energy of oxidation for the metal tip is lower or higher than that of PCMO, respectively. While the clockwise hysteresis can be attributed to electric field induced oxidation/reduction, the counter clockwise hysteresis can be explained by oxygen vacancy migration in an electrical field. Alternating-current conductance spectra also reveal distinct hopping barriers between these two categories of devices at high resistive states.展开更多
We establish a new model based on fractal theory and cubic spline interpolation to study the effective thermal conductivity of isotropic porous silica low-k materials. A 3D fractal model is introduced to describe the ...We establish a new model based on fractal theory and cubic spline interpolation to study the effective thermal conductivity of isotropic porous silica low-k materials. A 3D fractal model is introduced to describe the structure of the silica xerogel and silica hybrid materials (such as methylsilsesquioxane, MSQ). Combined with fractal structure, a more suitable medium approximation is developed to study the isotropic porous silica xerogel and MSQ materials. Cubic spline interpolation for fitting discrete predictions from the fractal model is used to obtain the continuous function of the effective thermal conductivity versus porosity. Compared with other common models, the effective thermal conductivity predicted by our model presents better agreement with the experimental data for all porosity. These results indicate that the proposed model is valid.展开更多
Silica microspheres self-assembled in glass capillary are investigated. Monodisperse silica microsphere dispersions in diameter 320nm are self-organized into a bulk cylindrical colloidal crystal by evaporation induced...Silica microspheres self-assembled in glass capillary are investigated. Monodisperse silica microsphere dispersions in diameter 320nm are self-organized into a bulk cylindrical colloidal crystal by evaporation induced nucleation and crystallization. The resulting colloidal crystals are characterized by optical microscopy and scanning electronic microscopy (SEM), and the SEM images show these crystals dominate in fcc lattice with its (111) crystallographic axis as longitudinal. The colloidal crystal filled capillary is packaged into a heat-shrink plastic tube and a fiber measurement system is designed to measure the optical property of colloidal bulk in capillary. It is found that an appreciable bandgap appears at wavelength 686 nm from the transmission spectroscopy, which is consistent with the theoretical estimation. A considerable photonic band gap of up to -10 dB and a steep photonic band edge of up to 0.25 dB/nm indicate that silica microspheres are promising for implementing optical filter applications in fiber systems.展开更多
In/Pd-doped SnO2 is synthesized via a sol-gel method and coated on a silicon substrate with Pt electrodes to fabricate a micro-structure sensor. The sensor can be used to detect CO down to l ppm (the sensitivity is a...In/Pd-doped SnO2 is synthesized via a sol-gel method and coated on a silicon substrate with Pt electrodes to fabricate a micro-structure sensor. The sensor can be used to detect CO down to l ppm (the sensitivity is about 3), and the response time and recovery time are about 5 and 15 s, respectively. Excellent selectivity is also found based on our sensor. These results demonstrate a promising approach to fabricate high-performance CO sensors with high sensitivity and quick response.展开更多
The possibility of formation of complexes between glycine and boron doped C60 (C59B) fullerene is investigated and compared with that of C60 fullerene by using the density functional theory calculations. It has been...The possibility of formation of complexes between glycine and boron doped C60 (C59B) fullerene is investigated and compared with that of C60 fullerene by using the density functional theory calculations. It has been found that the binding of glycine to C59B generated the most stable complexes via its carbonyl oxygen active site, with a binding energy of-37.89 kcal/mol, while the glycine molecule prefers to bind to the pure C60 cage via its amino nitrogen active site, consistent with the recent experimental and theoretical studies. We have also tested the stability of the most stable Gly-C59B complex with ab initio molecular dynamics simulation, carried out at room temperature. These indicate that the B-doped C60 fullerenes seem to be more suitable materials for bindings to proteins than pure C60 fullerenes.展开更多
Different TiOx thin films prepared by graded or sufficient oxidization of Ti are applied with Pt or Ag electrode in metal?insulator-metal (MIM) structures for studying the properties and mechanisms of resistive swi...Different TiOx thin films prepared by graded or sufficient oxidization of Ti are applied with Pt or Ag electrode in metal?insulator-metal (MIM) structures for studying the properties and mechanisms of resistive switching. The differences on the mobile oxygen vacancies in TiOx films and different work functions of the electrode films result in different insulator-metal interface states, which are displayed as ohmic-like or non-ohmic contact. Based on the interface states, the electrical models for MIM devices are analyzed and extracted. The electrode-limited effect and the bulk-limited effect can be unified to explain the mechanisms for resistive switching behavior as the dominant effect respectively in various conditions. All the current-voltage curves of the four kinds of specimens measured in the experiments can be explained and proved in accordance with the theory.展开更多
We prepare NiZnFe2O4 soft magnetic ferrites with different molar ratios with the layered precursor method and investigate their magnetic properties. In the layered precursor, metal ions are scattered on the layer plat...We prepare NiZnFe2O4 soft magnetic ferrites with different molar ratios with the layered precursor method and investigate their magnetic properties. In the layered precursor, metal ions are scattered on the layer plate in a certain way on account of the effect of lowest lattice energy and lattice orientation. After high temperature calcinations, spinel ferrites with uniform structural component and single magnetic domain can be obtained, and the magnetic property is improved greatly. NiZnFe2O4 ferrites prepared have the best specific saturation magnetization of 79.15 emu·g^-1, higher than that of 68 emu·g^-1 prepared by the chemical co-precipitation method and that of 59 emu·g^-1prepared by the emulsion-gel method. Meanwhile the coercivity of NiZnFe2O4 ferrites prepared by layered precursor method is 14 kA·m^-1, lower than that of 50 emu·g^-1 prepared by the co-precipitation method and that of 59 emu·g^-1 prepared by the emulsion-gel method.展开更多
The introduction of poly(ether urethane) (PEUR) into polymer electrolyte based on poly(ethylene oxide), LiI and I2, has significantly increased the ionic conductivity by nearly two orders of magnitudes. An incre...The introduction of poly(ether urethane) (PEUR) into polymer electrolyte based on poly(ethylene oxide), LiI and I2, has significantly increased the ionic conductivity by nearly two orders of magnitudes. An increment of I3- diffusion coefficient is also observed. All-solid-state dye-sensitized solar cells are constructed using the polymer electrolytes. It was found that PEUR incorporation has a beneficial effect on the enhancement of open circuit voltage VOC by shifting the band edge of TiO2 to a negative value. Scanningelectron microscope images indicate the perfect interfacial contact between the TiO2 electrode and the blend electrolyte.展开更多
Porosity as one of the crucial factors to film morphology affects the overall electrical current-voltage characteristics of dye-sensitized solar cell (DSC). We search for the short-circuit current density, the open-...Porosity as one of the crucial factors to film morphology affects the overall electrical current-voltage characteristics of dye-sensitized solar cell (DSC). We search for the short-circuit current density, the open-circuit voltage and the maximum power output as the main functional parameters of DSC closely related to porosity under different film thickness. The theoretical analyses show some exciting results. As porosity changes from 0.41 to 0.75, the short-circuit current density shows the optimal value when the film thickness is 8-10 μm. The open-circuit voltage presents different variation tendencies for the film thicknesses within 1-8 μm and within 10-30 μm. The porosity is near 0.41 and the film thickness is about 10 μm, DSC will have the maximum power output. The theoretical studies also illustrate that given a good porosity distribution, DSC can obtain an excellent short-circuit current characteristic, which agrees well with the experimental results reported in previous literature.展开更多
基金Supported by the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No KJCX2-SW-W26, and the National Natural Science Foundation of China under Grant Nos 90406017 and 10427402.
文摘Metal-tip/Pr0.7Ca0.3MnO3/Pt devices possess two types of I-V hysteresis: clockwise vs counter clockwise depending on the tip materials. The criteria for categorization of these two types of devices can be simply based on whether the Gibbs free energy of oxidation for the metal tip is lower or higher than that of PCMO, respectively. While the clockwise hysteresis can be attributed to electric field induced oxidation/reduction, the counter clockwise hysteresis can be explained by oxygen vacancy migration in an electrical field. Alternating-current conductance spectra also reveal distinct hopping barriers between these two categories of devices at high resistive states.
基金Supported by the National Natural Science Foundation of China under Grant No 60476011.
文摘We establish a new model based on fractal theory and cubic spline interpolation to study the effective thermal conductivity of isotropic porous silica low-k materials. A 3D fractal model is introduced to describe the structure of the silica xerogel and silica hybrid materials (such as methylsilsesquioxane, MSQ). Combined with fractal structure, a more suitable medium approximation is developed to study the isotropic porous silica xerogel and MSQ materials. Cubic spline interpolation for fitting discrete predictions from the fractal model is used to obtain the continuous function of the effective thermal conductivity versus porosity. Compared with other common models, the effective thermal conductivity predicted by our model presents better agreement with the experimental data for all porosity. These results indicate that the proposed model is valid.
文摘Silica microspheres self-assembled in glass capillary are investigated. Monodisperse silica microsphere dispersions in diameter 320nm are self-organized into a bulk cylindrical colloidal crystal by evaporation induced nucleation and crystallization. The resulting colloidal crystals are characterized by optical microscopy and scanning electronic microscopy (SEM), and the SEM images show these crystals dominate in fcc lattice with its (111) crystallographic axis as longitudinal. The colloidal crystal filled capillary is packaged into a heat-shrink plastic tube and a fiber measurement system is designed to measure the optical property of colloidal bulk in capillary. It is found that an appreciable bandgap appears at wavelength 686 nm from the transmission spectroscopy, which is consistent with the theoretical estimation. A considerable photonic band gap of up to -10 dB and a steep photonic band edge of up to 0.25 dB/nm indicate that silica microspheres are promising for implementing optical filter applications in fiber systems.
文摘In/Pd-doped SnO2 is synthesized via a sol-gel method and coated on a silicon substrate with Pt electrodes to fabricate a micro-structure sensor. The sensor can be used to detect CO down to l ppm (the sensitivity is about 3), and the response time and recovery time are about 5 and 15 s, respectively. Excellent selectivity is also found based on our sensor. These results demonstrate a promising approach to fabricate high-performance CO sensors with high sensitivity and quick response.
文摘The possibility of formation of complexes between glycine and boron doped C60 (C59B) fullerene is investigated and compared with that of C60 fullerene by using the density functional theory calculations. It has been found that the binding of glycine to C59B generated the most stable complexes via its carbonyl oxygen active site, with a binding energy of-37.89 kcal/mol, while the glycine molecule prefers to bind to the pure C60 cage via its amino nitrogen active site, consistent with the recent experimental and theoretical studies. We have also tested the stability of the most stable Gly-C59B complex with ab initio molecular dynamics simulation, carried out at room temperature. These indicate that the B-doped C60 fullerenes seem to be more suitable materials for bindings to proteins than pure C60 fullerenes.
文摘Different TiOx thin films prepared by graded or sufficient oxidization of Ti are applied with Pt or Ag electrode in metal?insulator-metal (MIM) structures for studying the properties and mechanisms of resistive switching. The differences on the mobile oxygen vacancies in TiOx films and different work functions of the electrode films result in different insulator-metal interface states, which are displayed as ohmic-like or non-ohmic contact. Based on the interface states, the electrical models for MIM devices are analyzed and extracted. The electrode-limited effect and the bulk-limited effect can be unified to explain the mechanisms for resistive switching behavior as the dominant effect respectively in various conditions. All the current-voltage curves of the four kinds of specimens measured in the experiments can be explained and proved in accordance with the theory.
基金Supported by the National Natural Science Foundation of China under Grant No 60971019.
文摘We prepare NiZnFe2O4 soft magnetic ferrites with different molar ratios with the layered precursor method and investigate their magnetic properties. In the layered precursor, metal ions are scattered on the layer plate in a certain way on account of the effect of lowest lattice energy and lattice orientation. After high temperature calcinations, spinel ferrites with uniform structural component and single magnetic domain can be obtained, and the magnetic property is improved greatly. NiZnFe2O4 ferrites prepared have the best specific saturation magnetization of 79.15 emu·g^-1, higher than that of 68 emu·g^-1 prepared by the chemical co-precipitation method and that of 59 emu·g^-1prepared by the emulsion-gel method. Meanwhile the coercivity of NiZnFe2O4 ferrites prepared by layered precursor method is 14 kA·m^-1, lower than that of 50 emu·g^-1 prepared by the co-precipitation method and that of 59 emu·g^-1 prepared by the emulsion-gel method.
基金Supported by the High-Tech Research and Development Program of China under Grant No 2007AA05Z439, the National Basic Research Program of China under Grant No 2006CB202605, and the National Natural Science Foundation of China under Grant No 20873162.
文摘The introduction of poly(ether urethane) (PEUR) into polymer electrolyte based on poly(ethylene oxide), LiI and I2, has significantly increased the ionic conductivity by nearly two orders of magnitudes. An increment of I3- diffusion coefficient is also observed. All-solid-state dye-sensitized solar cells are constructed using the polymer electrolytes. It was found that PEUR incorporation has a beneficial effect on the enhancement of open circuit voltage VOC by shifting the band edge of TiO2 to a negative value. Scanningelectron microscope images indicate the perfect interfacial contact between the TiO2 electrode and the blend electrolyte.
基金Supported by the National Bauic Research Program of China under Grant No 2006CB202600, Funds of Chinese Academy of Sciences for Key Topics in Innovation Engineering under Grant No KGCX2-YW-326, the National Natural Science Foundation of China under Grant No 20703046, and the National Science Foundation of Nantong University under Grant No 08Z067.
文摘Porosity as one of the crucial factors to film morphology affects the overall electrical current-voltage characteristics of dye-sensitized solar cell (DSC). We search for the short-circuit current density, the open-circuit voltage and the maximum power output as the main functional parameters of DSC closely related to porosity under different film thickness. The theoretical analyses show some exciting results. As porosity changes from 0.41 to 0.75, the short-circuit current density shows the optimal value when the film thickness is 8-10 μm. The open-circuit voltage presents different variation tendencies for the film thicknesses within 1-8 μm and within 10-30 μm. The porosity is near 0.41 and the film thickness is about 10 μm, DSC will have the maximum power output. The theoretical studies also illustrate that given a good porosity distribution, DSC can obtain an excellent short-circuit current characteristic, which agrees well with the experimental results reported in previous literature.