期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Drum instability of thinning spinning ultra thin-walled tubes with large diameter-to-thickness ratio 被引量:2
1
作者 罗不凡 李新和 +1 位作者 张旭 骆亚洲 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2456-2462,共7页
In order to explore drum instability problems of thinning spinning ultra thin-walled tubes with large diameter-to-hickness ratio, experiments of thinning spinning ultra thin-walled tubes with different clearances betw... In order to explore drum instability problems of thinning spinning ultra thin-walled tubes with large diameter-to-hickness ratio, experiments of thinning spinning ultra thin-walled tubes with different clearances between the mandrel and the tube were carried out. The phenomena of drum instability were analyzed. Drum instability mechanism was studied. The important influence of the mandrel-locked ring on stable thinning spinning was found. Besides, two important parameters, namely drum ratio and drum stiffness, were proposed to characterize the drum instability of spinning ultra thin-walled tubes with large diameter-to-thickness ratio. What's more, numerical simulations were applied to explore the influences of different clearance ratios and diameter-to-thickness ratios on the drum instability. As a result, it is found that the mandrel-locked ring is the key to the stability and precision of spinning; drum ratio can reflect the degree of the deformation of the tubes; drum stiffness is a comprehensive index to measure the influences of the tube's own parameters on the spinning instability; both the clearance ratio and diameter-thickness ratio have significant influences on the drum ratio and drum stiffness. 展开更多
关键词 drum instability mechanism clearance ratio mandrel-locked ring drum ratio drum stiffness
下载PDF
Safety Analysis for Thread Pair Clearance of Safety Mechanism of Three Gorges Project Ship Lift 被引量:2
2
作者 SHI Duanwei CHENG Shuxiao +2 位作者 ZHAO Tiezhu PENG Hui WANG Yongbo 《Wuhan University Journal of Natural Sciences》 CAS 2014年第6期535-543,共9页
The Three Gorges Project(TGP) ship lift employs 4 safety mechanisms, of which one consists of a rotary locking screw and a nut jaw column. The thread pair clearance(TPC) of safety mechanisms is set at 60 mm. Owing... The Three Gorges Project(TGP) ship lift employs 4 safety mechanisms, of which one consists of a rotary locking screw and a nut jaw column. The thread pair clearance(TPC) of safety mechanisms is set at 60 mm. Owing to influential factors,the TPC changes randomly in the upward/downward-stroke of the ship chamber. If it diminished to 0, the safety mechanism would be jammed, thus resulting in disastrous accidents. By the bearing test of the drive system, 7 influential factors have been studied; 15 other influential factors(including 8 factors of manufacture and installation deviation, 3 factors of chamber offset, 2 factors of external load and 2 factors of wear) have been analyzed based on the design data. Results by the limit superposition reveal that the TPC change varies from -43.8 mm to +48.4 mm when the water level of the chamber ranges from 3.4 m to 3.6 m. According to the Gaussian distribution, the probability of the TPC change varied from -53.7 mm to +58.8 mm in the most detrimental status is99.74%, therefore, the TPC remains in a safe condition. This paper puts forward that two-phase operation of the drive system should be adopted so as to reduce the maximum TPC change to -44.6 mm. 展开更多
关键词 ship lift safety mechanism drive system thread pair clearance prediction safety
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部