期刊文献+
共找到159篇文章
< 1 2 8 >
每页显示 20 50 100
Mechanical Behavior and Microstructure Evolution during Tensile Deformation of Twinning Induced Plasticity Steel Processed by Warm Forgings
1
作者 王文 ZHAO Modi +2 位作者 WANG Xingfu 汪聃 韩福生 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期417-424,共8页
The mechanical behavior and microstructural evolution of an Fe-30Mn-3Al-3Si twinninginduced plasticity(TWIP)steel processed using warm forging was investigated.It is found that steel processed via warm forging improve... The mechanical behavior and microstructural evolution of an Fe-30Mn-3Al-3Si twinninginduced plasticity(TWIP)steel processed using warm forging was investigated.It is found that steel processed via warm forging improves comprehensive mechanical properties compared to the TWIP steel processed via cold rolling,with a high tensile strength(R_(m))of 793 MPa,a yield strength(R_(P))of 682 MPa,an extremely large R_(P)/R_(m)ratio as high as 0.86 as well as an excellent elongation rate of 46.8%.The microstructure observation demonstrates that steel processed by warm forging consists of large and elongated grains together with fine,equiaxed grains.Complicated micro-defect configurations were also observed within the steel,including dense dislocation networks and a few coarse deformation twins.As the plastic deformation proceeds,the densities of dislocations and deformation twins significantly increase.Moreover,a great number of slip lines could be observed in the elongated grains.These findings reveal that a much more dramatic interaction between microstructural defect and dislocations glide takes place in the forging sample,wherein the fine and equiaxed grains propagated dislocations more rapidly,together with initial defect configurations,are responsible for enhanced strength properties.Meanwhile,larger,elongated grains with more prevalently activated deformation twins result in high plasticity. 展开更多
关键词 TWIP steel TWINNING mechanical property deformation mechanism MICROSTRUCTURE
下载PDF
Deformation mechanism,orientation evolution and mechanical properties of annealed cross-rolled Mg-Zn-Zr-Y-Gd sheet during tension
2
作者 Xia Lin Zhiyong Chen +3 位作者 Jianbo Shao Jiangying Xiong Zhang Hu Chuming Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2340-2350,共11页
Mg-6.75Zn-0.57Zr-0.4Y-0.18Gd(wt.%)sheet with typical basal texture was produced by cross rolling and annealing.Room temperature tensile tests were subsequently conducted along rolling direction(RD),transverse directio... Mg-6.75Zn-0.57Zr-0.4Y-0.18Gd(wt.%)sheet with typical basal texture was produced by cross rolling and annealing.Room temperature tensile tests were subsequently conducted along rolling direction(RD),transverse direction(TD),and diagonal direction(RD45).Deformation mechanism and orientation evolution during the tension were investigated by quasi-in-situ electron backscatter diffraction observation and in-grain misorientation axis analysis.The results indicate that the activation of deformation mechanism mainly depends on the initial grain orientation.For RD sample,prismatic<a>slip plays an important role in the deformation of grains with<0001>axis nearly perpendicular to the RD.With the<0001>axis gradually tilted towards the RD,basal<a>slip becomes the dominant deformation mode.After the tensile fracture,the initial concentrically distributed{0001}pole is split into double peaks extending perpendicular to the RD,and the randomly distributed{1010}pole becomes parallel to the RD.The evolution in{0001}and{1010}poles during tension is related to the lattice rotation induced by basal<a>slip and prismatic<a>slip,respectively.TD and RD45 samples exhibit similar deformation mechanism and orientation evolution as the RD sample,which results in the nearly isotropic mechanical properties in the annealed cross-rolled sheet. 展开更多
关键词 Magnesium alloys deformation mechanism Orientation evolution mechanical properties
下载PDF
Origin of nucleation and growth of extension twins in grains unsuitably oriented for twinning during deformation of Mg-1%Al
3
作者 Biaobiao Yang Javier LLorca 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1186-1203,共18页
A large number of anomalous extension twins,with low or even negative twinning Schmid factors,were found to nucleate and grow in a strongly textured Mg-1Al alloy during tensile deformation along the extruded direction... A large number of anomalous extension twins,with low or even negative twinning Schmid factors,were found to nucleate and grow in a strongly textured Mg-1Al alloy during tensile deformation along the extruded direction.The deformation mechanisms responsible for this behaviour were investigated through in-situ electron back-scattered diffraction,grain reference orientation deviation,and slip trace-modified lattice rotation.It was found that anomalous extension twins nucleated mainly at the onset of plastic deformation at or near grain boundary triple junctions.They were associated with the severe strain incompatibility between neighbour grains as a result from the differentbasal slip-induced lattice rotations.Moreover,the anomalous twins were able to grow with the applied strain due to the continuous activation ofbasal slip in different neighbour grains,which enhanced the strain incompatibility.These results reveal the complexity of the deformation mechanisms in Mg alloys at the local level when deformed along hard orientations. 展开更多
关键词 Magnesium Extension twinning In-situ electron back-scattered diffraction basal slip deformation mechanisms.
下载PDF
Characterization of local chemical ordering and deformation behavior in high entropy alloys by transmission electron microscopy
4
作者 Qiuhong Liu Qing Du +7 位作者 Xiaobin Zhang Yuan Wu Andrey A.Rempel Xiangyang Peng Xiongjun Liu Hui Wang Wenli Song Zhaoping Lü 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期877-886,共10页
Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed composit... Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed compositions,and varied locations.Transmission electron microscopy(TEM)as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys.In this short communication,we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs.By using advanced TEM techniques,not only the existence of SROs was confirmed,but also the effect of SROs on the deformation mechanism was clarified.Moreover,the perspective related to application of TEM techniques in HEAs are also discussed. 展开更多
关键词 high entropy alloys transmission electron microscopy short-range ordering deformation mechanisms
下载PDF
Study on the low mechanical anisotropy of extruded Mg-Zn-Mn-Ce-Ca alloy tube in the compression process
5
作者 Dandan Li Qichi Le +6 位作者 Xiong Zhou Xiaoqiang Li Chenglu Hu Ruizhen Guo Tong Wang Ping Wang Wenxin Hu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1054-1067,共14页
In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechani... In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechanical anisotropy was investigated.The results revealed that the alloy tube contains the high content(Mg1-xZnx)11Ce phase and the low content of Mg12Ce phase.These second phases are respectively incoherent and coherent with the Mg matrix,and their influence can be ignored.Additionally,the alloy tube exhibited a weak basal fiber texture,where the c-axis was aligned along the 0°∼30°tilt from TD to ED.Such a texture made the initial deformation(at 1.0%∼1.6%strain)of the three samples controlled by comparable basalslip.As deformation progressed(1.6∼9.0%strain),larger amounts of ETWs nucleated and gradually approached saturation in the three samples,re-orienting the c-axis to a 0°∼±30°deviation with respect to the loading directions.Meanwhile,the prismatic and pyramidal<c+a>slips replaced the dominant deformation progressively until fracture.Eventually,the similar deformation mechanisms determined by the weak initial texture in the three samples contribute to the comparable strain hardening rates,resulting in the low compressive anisotropy of the alloy tube. 展开更多
关键词 Mg alloy tube Low mechanical anisotropy Weak texture deformation mechanism.
下载PDF
Induced Surface Austenitic-Martensitic Transition by Mechanical Deformation in Mn Steel.Effect of Surface Properties
6
作者 Boutarek-Zaourar Nama Mansour Samir Amara Sif Eddine 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2011年第S1期223-227,共5页
For a lot of applications in the mechanical industry,both attractive and mechanical properties of materials and wear resistance are required.Usually such a combination is achieved only by performing surface treatments... For a lot of applications in the mechanical industry,both attractive and mechanical properties of materials and wear resistance are required.Usually such a combination is achieved only by performing surface treatments.The aim of this investigation is the consolidation of 12% Mn steel surface by treatment of impacts.We show by optical and scanning electron microscopy,X ray diffraction,X ray spectrometry analysis and also by the realization of micro hardness,the effect of this kind of treatment on the mechanical and structural stability of the surface zone.Among of many obtained results,we distinguish the clear surface consolidation induced by a modification of surface zone crystalline structure.The mechanical deformation causes the transformation from an austenitic structure to the martensitic structure. 展开更多
关键词 phase transition Mn steel mechanical deformation surface properties impact treatment
原文传递
High performance solid-state thermoelectric energy conversion via inorganic metal halide perovskites under tailored mechanical deformation
7
作者 Lifu YAN Lingling ZHAO +3 位作者 Guiting YANG Shichao LIU Yang LIU Shangchao LIN 《Frontiers in Energy》 SCIE CSCD 2022年第4期581-594,共14页
Solid-state thermoelectric energy conversion devices attract broad research interests because of their great promises in waste heat recycling,space power generation,deep water power generation,and temperature control,... Solid-state thermoelectric energy conversion devices attract broad research interests because of their great promises in waste heat recycling,space power generation,deep water power generation,and temperature control,but the search for essential thermoelectric materials with high performance still remains a great challenge.As an emerging low cost,solution-processed thermoelectric material,inorganic metal halide perovskites CsPb(I_(1–x)Br_(x))_(3) under mechanical deformation is systematically investigated using the first-principle calculations and the Boltzmann transport theory.It is demonstrated that halogen mixing and mechanical deformation are efficient methods to tailor electronic structures and charge transport properties in CsPb(I_(1–x)Br_(x))_(3) synergistically.Halogen mixing leads to band splitting and anisotropic charge transport due to symmetry-breakinginduced intrinsic strains.Such band splitting reconstructs the band edge and can decrease the charge carrier effective mass,leading to excellent charge transport properties.Mechanical deformation can further push the orbital energies apart from each other in a more controllable manner,surpassing the impact from intrinsic strains.Both anisotropic charge transport properties and ZT values are sensitive to the direction and magnitude of strain,showing a wide range of variation from 20%to 400%(with a ZT value of up to 1.85)compared with unstrained cases.The power generation efficiency of the thermoelectric device can reach as high as approximately 12%using mixed halide perovskites under tailored mechanical deformation when the heat-source is at 500 K and the cold side is maintained at 300 K,surpassing the performance of many existing bulk thermoelectric materials. 展开更多
关键词 inorganic metal halide perovskites mechanical deformation THERMOELECTRICS first-principle calculations Boltzmann transport theory
原文传递
Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy 被引量:1
8
作者 Kaiju Lu Ankur Chauhan +5 位作者 Dimitri Litvinov Aditya Srinivasan Tirunilai Jens Freudenberger Alexander Kauffmann Martin Heilmaier Jarir Aktaa 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第5期237-245,共9页
In the present study,the micro-mechanical behavior of Co CrFeMnNi high-entropy alloy was investigated using an in-house micro-tensile setup at room temperature and 550℃ at different strain rates.Micromechanical prope... In the present study,the micro-mechanical behavior of Co CrFeMnNi high-entropy alloy was investigated using an in-house micro-tensile setup at room temperature and 550℃ at different strain rates.Micromechanical properties are compared with those obtained using a commercial macro-tensile setup to check a potential sample size effect.Results show that mechanical properties such as yield strength,ultimate tensile strength and uniform elongation are independent of the sample size.However,the total elongation-to-failure of micro-samples is found to be lower than those of macro-counterparts.Apart from this,the material exhibits serrated plastic flow,which is strain rate dependent in terms of the onset strain and shape of serrations at 550℃.Furthermore,transmission electron microscopy investigations were performed to correlate the occurrence of serrations to the observed distinct dislocation structures.Microstructural results provide direct evidence that dislocations are curved and hence effectively pinned and unpinned at the lowest applied strain rate,which might be responsible for the occurrence of serrated plastic flow. 展开更多
关键词 High-entropy alloy mechanical properties Micro-tensile deformation mechanism SERRATION
原文传递
Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates 被引量:1
9
作者 安敏荣 雷岳峰 +5 位作者 宿梦嘉 刘兰亭 邓琼 宋海洋 尚玉 王晨 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期435-446,共12页
Crystalline/amorphous nanolaminate is an effective strategy to improve the mechanical properties of metallic materials,but the underlying deformation mechanism is still under the way of exploring.Here,the mechanical p... Crystalline/amorphous nanolaminate is an effective strategy to improve the mechanical properties of metallic materials,but the underlying deformation mechanism is still under the way of exploring.Here,the mechanical properties and plastic deformation mechanism of Ti/TiCu dual-phase nanolaminates(DPNLs)with different layer thicknesses are investigated using molecular dynamics simulations.The results indicate that the influence of the layer thickness on the plastic deformation mechanism in crystalline layer is negligible,while it affects the plastic deformation mechanism of amorphous layers distinctly.The crystallization of amorphous TiCu is exhibited in amorphous parts of the Ti/TiCu DPNLs,which is inversely proportional to the layer thickness.It is observed that the crystallization of the amorphous TiCu is a process driven by stress and heat.Young's moduli for the Ti/TiCu DPNLs are higher than those of composite material due to the amorphous/crystalline interfaces.Furthermore,the main plastic deformation mechanism in crystalline part:grain reorientation,transformation from hexagonal-close-packed-Ti to face-centered cubic-Ti and body-centered cubic-Ti,has also been displayed in the present work.The results may provide a guideline for design of high-performance Ti and its alloy. 展开更多
关键词 dual-phase nanolaminate molecular dynamics simulation deformation mechanism CRYSTALLIZATION
下载PDF
Ab initio study on the anisotropy of mechanical behavior and deformation mechanism for boron carbide
10
作者 李君 徐爽 +4 位作者 张金咏 刘立胜 刘齐文 佘武昌 傅正义 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第4期362-367,共6页
The mechanical properties and deformation mechanisms of boron carbide under a-axis and c-axis uniaxial compression are investigated by ab initio calculations based on the density functional theory.Strong anisotropy is... The mechanical properties and deformation mechanisms of boron carbide under a-axis and c-axis uniaxial compression are investigated by ab initio calculations based on the density functional theory.Strong anisotropy is observed.Under a-axis and c-axis compression,the maximum stresses are 89.0 GPa and 172.2 GPa respectively.Under a-axis compression,the destruction of icosahedra results in the unrecoverable deformation,while under c-axis compression,the main deformation mechanism is the formation of new bonds between the boron atoms in the three-atom chains and the equatorial boron atoms in the neighboring icosahedra. 展开更多
关键词 ANISOTROPY ab initio calculation mechanical property deformation mechanism
下载PDF
Tension-compression asymmetry and corresponding deformation mechanism in ZA21 magnesium bars with bimodal structure
11
作者 Yujiao Wang Yun Zhang Haitao Jiang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期92-103,共12页
We investigated the asymmetric tension-compression(T-C)behavior of ZA21 bars with bimodal and uniform structures through axial tension and compression tests.The results show that the yield strengths of bars having bim... We investigated the asymmetric tension-compression(T-C)behavior of ZA21 bars with bimodal and uniform structures through axial tension and compression tests.The results show that the yield strengths of bars having bimodal structure are 206.42 and 140.28 MPa under tension and compression,respectively,which are higher than those of bars having uniform structure with tensile and compressive yield strength of 183.71 and 102.86 MPa,respectively.Prismatic slip and extension twinning under tension and basal slip and extension twinning under compression dominate the yield behavior and induce the T-C asymmetry.However,due to the basal slip activated in fine grains under tension and the inhibition of extension twinning by fine grains under compression,the bimodal structure possesses a lower T-C asymmetry(0.68)compared to the uniform structure(0.56).Multiple extension twins occur during deformation,and the selection of twin variants depends on the Schmid factor of the six variants activated by parent grains.Furthermore,the strengthening effect of the bimodal structure depends on the grain size and the ratio of coarse and fine grains. 展开更多
关键词 bimodal structure deformation mechanism Hall-Petch relationship tension-compression asymmetry twin variant selection
下载PDF
Enhanced mechanical properties of Mg-1Al-12Y alloy containing long period stacking ordered phase
12
作者 Shuai Yuan Jinhui Wang +3 位作者 Xiaoqiang Li Hongbin Ma Lei Zhang Peipeng Jin 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4679-4688,共10页
In this study, a systematic investigation on the effect of solution treatment time(2–8 h) at 540℃ on the microstructure and mechanical properties in as-cast Mg-1Al-12Y(AY112, wt.%) alloy was performed. The results s... In this study, a systematic investigation on the effect of solution treatment time(2–8 h) at 540℃ on the microstructure and mechanical properties in as-cast Mg-1Al-12Y(AY112, wt.%) alloy was performed. The results showed that the solution treatment did not cause the growth of grains and the change of texture;however, the mechanical properties had been significantly improved, which was mainly attributed to the precipitation of 18R long period ordered stacking(LPSO) phase in the solution-treated alloys. In addition, the dissolution of β-Mg_(24)Y_(5)phase and the diffusion of solute atoms during the solution treatment were both beneficial to the mechanical properties. When the as-cast alloy was solution-treated at 540℃ for 4 h(T4-4h alloy), the mechanical properties of the alloy are optimal. Compared with the as-cast alloy,the ultimate tensile strength(UTS) and elongation of the T4-4h alloy are increased by ~23% and ~179%, respectively. The deformation of the T4-4h alloys was dominated by a combination of basal slip and non-basal slip, and the presence of the LPSO phase effectively inhibited the nucleation of extension twin. Besides, the LPSO phase can also hinder the activation of basal dislocations and the movement of non-basal dislocations. Therefore, the LPSO phase simultaneously improves the strength and plasticity of the alloy. 展开更多
关键词 Solution treatment LPSO phase mechanical properties deformation mechanism
下载PDF
Influence of bimodal non-basal texture on microstructure characteristics,texture evolution and deformation mechanisms of AZ31 magnesium alloy sheet rolled at liquid-nitrogen temperature
13
作者 Shouzuo Zhang Li Hu +7 位作者 Yutao Ruan Tao Zhou Qiang Chen Yang Zhong Laixin Shi Mingao Li Mingbo Yang Shuyong Jiang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2600-2609,共10页
Cryogenic rolling experiments have been conducted on the AZ31 magnesium(Mg)alloy sheet with bimodal non-basal texture,which is fabricated via the newly developed equal channel angular rolling and continuous bending pr... Cryogenic rolling experiments have been conducted on the AZ31 magnesium(Mg)alloy sheet with bimodal non-basal texture,which is fabricated via the newly developed equal channel angular rolling and continuous bending process with subsequent annealing(ECAR-CB-A)process.Results demonstrate that this sheet shows no edge cracks until the accumulated thickness reduction reaches about 18.5%,which is about 105.6%larger than that of the sheet with traditional basal texture.Characterization experiments including optical microstructure(OM),X-ray diffractometer(XRD),and electron backscatter diffraction(EBSD)measurements are then performed to explore the microstructure characteristics,texture evolution and deformation mechanisms during cryogenic rolling.Experimental observations confirm the occurrence of abundant{10–12}extension twins(ETs),twin-twin interactions among{10–12}ET variants and{10–12}-{10–12}double twins(DTs).The twinning behaviors as for{10–12}ETs are responsible for the concentration of c-axes of grains towards normal direction(ND)and the formation of transverse direction(TD)-component texture at the beginning of cryogenic rolling.The twinning behaviors with respect to{10–12}-{10–12}DTs are responsible for the disappearance of TD-component texture at the later stage of cryogenic rolling.The involved deformation mechanisms can be summarized as follows:Firstly{10–12}ETs dominate the plastic deformation.Subsequently,dislocation slip,especially basal<a>slip,starts to sustain more plastic strain,while{10–12}ETs occur more frequently and enlarge continuously,resulting in the formation of twin-twin interaction among{10–12}ET variants.With the increasing rolling passes,{10–12}-{10–12}DTs incorporate in the plastic deformation and dislocation slip serves as the major one to sustain plastic strain.The activities of basal<a>slip,{10–12}ETs and{10–12}-{10–12}DTs benefit in accommodating the plastic strain in sheet thickness,which contributes to the improved rolling formability in AZ31 Mg alloy sheet with bimodal non-basal texture during cryogenic rolling. 展开更多
关键词 AZ31 Mg alloy Bimodal non-basal texture Cryogenic rolling Microstructure evolution deformation mechanism
下载PDF
Deformation Mechanism of Bimodal Structured 2205 Duplex Stainless Steel in Two Yield Stages
14
作者 盛捷 DU Mingchen +7 位作者 LI Yufeng MA Guocai CHEN Weiqian ZHENG Yuehong ZHAN Faqi REN Junqiang G I Raab 喇培清 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期184-191,共8页
A kind of micro/nanostructured 2205 duplex stainless steel(DSS)with uniform distribution of nanocrystals was prepared via aluminothermic reaction method.The analysis of stress-strain curve showed that the fracture str... A kind of micro/nanostructured 2205 duplex stainless steel(DSS)with uniform distribution of nanocrystals was prepared via aluminothermic reaction method.The analysis of stress-strain curve showed that the fracture strength and elongation of the specimen were 946 MPa and 24.7%,respectively.At present,the research on microstructure of bimodal 2205 DSS at room temperature(RT)mainly depended on scanning electron microscope(SEM)observation after loading experiments.The test result indicates that there are two different yield stages in stress-strain curve of specimen during tensile process.The microstructure of duplex bimodal structured stainless steel consists of two pairs of soft hard regions and phases.By studying deformation mechanism of bimodal structured stainless steel,the interaction between soft phase and hard phase are discussed.The principle of composition design and microstructure control of typical duplex stainless steel is obtained,which provides an important research basis for designing of advanced duplex stainless steel. 展开更多
关键词 2205 duplex stainless steel bimodal structure in-situ tensile test deformation mechanism two different yield stages
下载PDF
Influencing factors and prevention measures of casing deformation in deep shale gas wells in Luzhou block,southern Sichuan Basin,SW China
15
作者 HAN Lingling LI Xizhe +5 位作者 LIU Zhaoyi DUAN Guifu WAN Yujin GUO Xiaolong GUO Wei CUI Yue 《Petroleum Exploration and Development》 SCIE 2023年第4期979-988,共10页
Based on structural distribution and fault characteristics of the Luzhou block,southern Sichuan Basin,as well as microseismic,well logging and in-situ stress data,the casing deformation behaviors of deep shale gas wel... Based on structural distribution and fault characteristics of the Luzhou block,southern Sichuan Basin,as well as microseismic,well logging and in-situ stress data,the casing deformation behaviors of deep shale gas wells are summarized,and the casing deformation mechanism and influencing factors are identified.Then,the risk assessment chart of casing deformation is plotted,and the measures for preventing and controlling casing deformation are proposed.Fracturing-activated fault slip is a main factor causing the casing deformation in deep shale gas wells in the Luzhou block.In the working area,the approximate fracture angle is primarily 10°-50°,accounting for 65.34%,and the critical pore pressure increment for fault-activation is 6.05-9.71 MPa.The casing deformation caused by geological factors can be prevented/controlled by avoiding the faults at risk and deploying wells in areas with low value of stress factor.The casing deformation caused by engineering factors can be prevented/controlled by:(1)keeping wells avoid faults with risks of activation and slippage,or deploying wells in areas far from the faulting center if such avoidance is impossible;(2)optimizing the wellbore parameters,for example,adjusting the wellbore orientation to reduce the shear force on casing to a certain extent and thus mitigate the casing deformation;(3)optimizing the casing program to ensure that the curvature radius of the curved section of horizontal well is greater than 200 m while the drilling rate of high-quality reservoirs is not impaired;(4)optimizing the fracturing parameters,for example,increasing the evasive distance,lowering the single-operation pressure,and increasing the stage length,which can help effectively reduce the risk of casing deformation. 展开更多
关键词 Sichuan Basin Luzhou block shale gas well casing deformation mechanism fault activation risk assessment prevention measure
下载PDF
Anelasticity to plasticity transition in a model two-dimensional amorphous solid
16
作者 尚宝双 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期143-147,共5页
Anelasticity, as an intrinsic property of amorphous solids, plays a significant role in understanding their relaxation and deformation mechanism. However, due to the lack of long-range order in amorphous solids, the s... Anelasticity, as an intrinsic property of amorphous solids, plays a significant role in understanding their relaxation and deformation mechanism. However, due to the lack of long-range order in amorphous solids, the structural origin of anelasticity and its distinction from plasticity remain elusive. In this work, using frozen matrix method, we study the transition from anelasticity to plasticity in a two-dimensional model glass. Three distinct mechanical behaviors, namely,elasticity, anelasticity, and plasticity, are identified with control parameters in the amorphous solid. Through the study of finite size effects on these mechanical behaviors, it is revealed that anelasticity can be distinguished from plasticity.Anelasticity serves as an intrinsic bridge connecting the elasticity and plasticity of amorphous solids. Additionally, it is observed that anelastic events are localized, while plastic events are subextensive. The transition from anelasticity to plasticity is found to resemble the entanglement of long-range interactions between element excitations. This study sheds light on the fundamental nature of anelasticity as a key property of element excitations in amorphous solids. 展开更多
关键词 amorphous solid deformation mechanism anelasticity to plasticity transition molecular dynamics simulation
下载PDF
Rheo-NMR: A versatile hyphenated technique for capturing molecular dynamics and structure under flow
17
作者 Yuqi Xiong Zishuo Wu +2 位作者 Lei Wu Chengyan Li Wei Chen 《Magnetic Resonance Letters》 2024年第1期50-60,共11页
The general development of Rheo-NMR during the last four decades as well as selective hyphenated apparatuses is presented.Based on different magnet types,the current review is divided into two categories,namely low-fi... The general development of Rheo-NMR during the last four decades as well as selective hyphenated apparatuses is presented.Based on different magnet types,the current review is divided into two categories,namely low-field and high-field NMR,while the timedomain NMR is normally applied in the former case and the frequency-domain NMR is adopted in the latter one.Depending on different rheometer cells,it can be further divided into tensile and shear mode Rheo-NMR.The combination of various rheometer cells and NMR facility guarantees our acquisition of molecular level structure and dynamics information under flow conditions,which is crucial for our understanding of the molecular origin of complex fluids.A personal perspective is also presented at last to highlight possible development in this direction. 展开更多
关键词 RHEO-NMR Polymer deformation mechanism Polymer rheology Viscoelastic property
下载PDF
Deformation Characteristics of Loess Landslide along the Contact between Loess and Neocene Red Mudstone 被引量:23
18
作者 WENBaoping WANGSijing +3 位作者 WANGEnzhi ZHANGJianmin WUYugeng WANGXinglin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2005年第1期139-150,共12页
The loess landslide along the contact between loess and Neogene red mudstone (NRM) is one of those that have occurred extensively and frequently in loess areas of China. To better understand the mechanism of this type... The loess landslide along the contact between loess and Neogene red mudstone (NRM) is one of those that have occurred extensively and frequently in loess areas of China. To better understand the mechanism of this type of landslides, a distressed loess slope being subjected to deformation along the loess-NRM contact was comprehensively investigated through approaches of field monitoring and laboratory physical modeling. Field observation and physical modeling shows that the slope deformation will experience two distinct processes: 1) laterally retrogressive and vertically progressive propagation, which was initiated by falling of the slope head; and 2) retrogressively separate mass sliding along the weak basal zone of the loess-NRM contact with minor sliding along the paleosols within the loess. Shear failure of the loess-NRM contact may initiate in the middle section, followed by a progressive propagation towards the slope toe and inner slope. Analysis reveals that the deformation characteristics of the distressed slope are largely constrained by slope topography, the unique structure, physical and mechanical properties of loess and paleosols, and occurrence and nature of the loess-NRM contact. Rainfall has significantly influence on the deformation characteristics of the slope through its interaction with the loess and soil of the loess-NRM contact. Additionally, improper style and intensity of cutting on the slope greatly enhance and accelerate the deformation course of the slope. 展开更多
关键词 loess landslide contact between loess and Neogene red mudstone deformation mechanism field monitoring physical modeling.
下载PDF
Response of Macromolecular Structure to Deformation in Tectonically Deformed Coal 被引量:8
19
作者 LI Xiaoshi JU Yiwen +1 位作者 HOU Quanlin FAN Junjia 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第1期82-90,共9页
The structural evolution of tectonically deformed coals (TDC) with different deformational mechanisms and different deformational intensities are investigated in depth through X-ray diffraction (XRD) analysis on 3... The structural evolution of tectonically deformed coals (TDC) with different deformational mechanisms and different deformational intensities are investigated in depth through X-ray diffraction (XRD) analysis on 31 samples of different metamorphic grades (R : 0.7%-3.1%) collected from the Huaibei coalfield. The results indicated that there are different evolution characteristics between the ductile and brittle deformational coals with increasing of metamorphism and deformation. On the one hand, with the increase of metamorphism, the atomic plane spacing (d002) is decreasing at step velocity, the stacking of the BSU layer (Lc) is increasing at first and then decreasing, but the extension of the BSU layer (La) and the ratio of La/Lc are decreasing initially and then increasing. On the other hand, for the brittle deformational coal, d002 is increasing initially and then decreasing, which causes an inversion of the variation of Lc and La under the lower-middle or higher-middle metamorphism grade when the deformational intensity was increasing. In contrast, in the ductile deformational coals, d002 decreased initially and then increased, and the value of L~ decreased with the increase of deformational intensity. But the value of La increased under the lower-middle metamorphism grade and increased at first and then decreased under the higher-middle metamorphism grade. We conclude that the degradation and polycondensation of TDC macromolecular structure can be obviously impacted during the ductile deformational process, because the increase and accumulation of unit dislocation perhaps transforms the stress into strain energy. Meanwhile, the brittle deformation can transform the stress into frictional heat energy, and promote the metamorphism and degradation as well. It can be concluded that deformation is more important than metamorphism to the differential evolution of the ductile and brittle deformational coals. 展开更多
关键词 tectonically deformed coal X-ray diffraction deformational mechanism deformationalintensity macromolecular structure
下载PDF
DEFORMATION AND FRACTURE MECHANISMS OF TWO-PHASE TiAl-BASED ALLOYS WITH FULLY LAMELLAR MICROSTRUCTURE 被引量:7
20
作者 Y. G .Zhang, C. Q. Chen (Beijing University of Aeronautics and Astronautics, Beijing 100083, China)Q. Xu (Beijing Laboratory of Electron Microscopy, Chinese Academy of Sciences. Beijing,China)M. C. Chaturvedi (The University of Manitoba, Winnipeg, Manito 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1995年第Z1期359-368,共10页
A two-phase TiAl-based alloy with fully lamellar structure has been deformed al room temperature and the deformed microstructures have been examined in dtails by optical microscopy(OM), scanning electron microscopy(... A two-phase TiAl-based alloy with fully lamellar structure has been deformed al room temperature and the deformed microstructures have been examined in dtails by optical microscopy(OM), scanning electron microscopy(SEM) and transmission electron microscopy(TEM) . Deformation mechanisms in the γ-TiAl phase has been defined and the role of grain boundaries in the deformation and fracture has been assessed Some of the mechanisms of interactions between twinning or gliding dislocations and three types of γ γ domain boundaries or γ α_2 interface in a lamellar grain have been identified and resistance of the various domain boundaries or the interface to the propagation of twinning has been evaluated 展开更多
关键词 TIAL deformation mechanism LAMELLAE TWINNING
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部