This paper presents a non-smooth multibody dynamic formulation and error analysis of an antenna pointing mechanism including frictional spatial revolute joints(FSRJs)with small clearance in the framework of the specia...This paper presents a non-smooth multibody dynamic formulation and error analysis of an antenna pointing mechanism including frictional spatial revolute joints(FSRJs)with small clearance in the framework of the special Euclidian group SE(3).The formulation leads to an inertial frame-invariant,a compact and unified description for rigid bodies and spatial revolute joints(SRJs).The geometric constraint of the bearing is covered by four open semi-cylinders,which can be treated as bilateral constraints assuming that the impact effects are negligible.The frictional contact problem is formulated as a horizontal linear complementary problem(HLCP),which is embedded in the Lie-group integration scheme.Error of the antenna pointing mechanism is modeled by means of the adjoint transformation and POE-based formula.The evolution of errors is obtained through the solution of non-smooth dynamics.The obtained numerical results illustrate the influences of FSRJs in dynamics modeling and error analysis of the antenna pointing mechanism.展开更多
基金supported by the National Natural Science Foundation of China(No.51635002 Key Program,52075016,U20A20281)。
文摘This paper presents a non-smooth multibody dynamic formulation and error analysis of an antenna pointing mechanism including frictional spatial revolute joints(FSRJs)with small clearance in the framework of the special Euclidian group SE(3).The formulation leads to an inertial frame-invariant,a compact and unified description for rigid bodies and spatial revolute joints(SRJs).The geometric constraint of the bearing is covered by four open semi-cylinders,which can be treated as bilateral constraints assuming that the impact effects are negligible.The frictional contact problem is formulated as a horizontal linear complementary problem(HLCP),which is embedded in the Lie-group integration scheme.Error of the antenna pointing mechanism is modeled by means of the adjoint transformation and POE-based formula.The evolution of errors is obtained through the solution of non-smooth dynamics.The obtained numerical results illustrate the influences of FSRJs in dynamics modeling and error analysis of the antenna pointing mechanism.