During screening operation, blinding or clogging of screen perforations generally occurs to reduce the sieving capacity and efficiency. Recently, the flip-flow screening has been widely recognized as a feasible method...During screening operation, blinding or clogging of screen perforations generally occurs to reduce the sieving capacity and efficiency. Recently, the flip-flow screening has been widely recognized as a feasible method to deal with the problem. In this paper, a novel centralized-driving flip-flow screen(CFS) was developed for the separation of fine and moist coal, and the key structures, namely, a centralized-driving mechanism and a quasi-circle beam mounted with the mat were designed for high reliability and stability. By means of a test on an experimental prototype, the effect of some factors, i.e., initial stretch and hardness of the polyurethane panel, respectively, and the rotation speed of the driving motor on the kinematic characteristic of the screen surface was investigated. Results show that without an initial stretch, the sieve mat generates the largest vibratory amplitude while the slacker the sieve mat initially is, the smaller amplitude it will accomplish. And an increase in the rotation speed could cause a rise in the vibratory amplitude. Unlike the two factors, the hardness does not have a definite effect on the kinematic performance, on which a further study is required. Finally, screening processing on a laboratory prototype was conducted to draw the conclusion that the developed CFS also has a high sieving efficiency for the fine and moist coal.展开更多
With the development of short video industry,video and bullet screen have become important ways to spread public opinions.Public attitudes can be timely obtained through emotional analysis on bullet screen,which can a...With the development of short video industry,video and bullet screen have become important ways to spread public opinions.Public attitudes can be timely obtained through emotional analysis on bullet screen,which can also reduce difficulties in management of online public opinions.A convolutional neural network model based on multi-head attention is proposed to solve the problem of how to effectively model relations among words and identify key words in emotion classification tasks with short text contents and lack of complete context information.Firstly,encode word positions so that order information of input sequences can be used by the model.Secondly,use a multi-head attention mechanism to obtain semantic expressions in different subspaces,effectively capture internal relevance and enhance dependent relationships among words,as well as highlight emotional weights of key emotional words.Then a dilated convolution is used to increase the receptive field and extract more features.On this basis,the above multi-attention mechanism is combined with a convolutional neural network to model and analyze the seven emotional categories of bullet screens.Testing from perspectives of model and dataset,experimental results can validate effectiveness of our approach.Finally,emotions of bullet screens are visualized to provide data supports for hot event controls and other fields.展开更多
The synthetic index K s for evaluating flip-flow screens is proposed and systematically optimized in view of the whole system. A series of optimized values of relevant parameters are found and then compared with those...The synthetic index K s for evaluating flip-flow screens is proposed and systematically optimized in view of the whole system. A series of optimized values of relevant parameters are found and then compared with those of the current industrial specifications. The results show that the optimized value K s approaches the one of those famous flip-flow screens in the world. Some new findings on geometric and kinematics parameters are useful for improving the flip-flow screens with a low K s value, which is helpful in developing clean coal technology.展开更多
The agglomeration of moist fine coal and the mechanism of aperture blinding in screening were analyzed. The theoretical analysis and a pilot test on that the elastic screen mesh can overcome the aperture blinding prob...The agglomeration of moist fine coal and the mechanism of aperture blinding in screening were analyzed. The theoretical analysis and a pilot test on that the elastic screen mesh can overcome the aperture blinding problem were presented.展开更多
Based on economic theories, the paper studies the personnel selection at the asymmetric job market using signaling and screening model. The authors hold the opinion that an organization can screen the candidates' ...Based on economic theories, the paper studies the personnel selection at the asymmetric job market using signaling and screening model. The authors hold the opinion that an organization can screen the candidates' signaling based on the self-selection principle by providing an appropriate compensation choice. A pay-based screening mechanism is proposed to help the organization drive away the nonqualified applicants and retain the excellent applicants.展开更多
Discrete element method(DEM)is an effective approach for studying the screening process of flip-flow screens.However,there have been few studies focusing on the thick layer of sticky-wet particles on flip-flow screens...Discrete element method(DEM)is an effective approach for studying the screening process of flip-flow screens.However,there have been few studies focusing on the thick layer of sticky-wet particles on flip-flow screens.To achieve accurate simulations of the thick layer of sticky-wet particles on a flip-flow screen,firstly,the movement law of particle flow was studied,and a multi-regime combination cali-bration method based on characteristics of particle flow regimes was proposed.Based on the Plackett-Burman experiment,the curse of dimensionality caused by multi-state and multi-contact parameters was overcome.Subsequently,the lifting cylinder,rotating drum,and trampoline tests were carried out to obtain macroscopic reference values under various granular flow regimes.The calibration results were then determined using the response surface method and climbing algorithm.Finally,the calibration results were tested at both macroscopic and mesoscopic scales and compared with a commonly used calibration method.The results demonstrate that the calibration method,which considers the multi-state characteristics,improves simulation accuracy by 2%-10%and reduces the simulation error to less than 10%,thus meeting the requirements for engineering optimization of flip-flow screens.展开更多
基金The financial support from the National Natural Science Foundation of China (Nos. 51221462 and 51134022)the Doctoral Programs Foundation of Ministry of Education of China (No. 20120095110001)
文摘During screening operation, blinding or clogging of screen perforations generally occurs to reduce the sieving capacity and efficiency. Recently, the flip-flow screening has been widely recognized as a feasible method to deal with the problem. In this paper, a novel centralized-driving flip-flow screen(CFS) was developed for the separation of fine and moist coal, and the key structures, namely, a centralized-driving mechanism and a quasi-circle beam mounted with the mat were designed for high reliability and stability. By means of a test on an experimental prototype, the effect of some factors, i.e., initial stretch and hardness of the polyurethane panel, respectively, and the rotation speed of the driving motor on the kinematic characteristic of the screen surface was investigated. Results show that without an initial stretch, the sieve mat generates the largest vibratory amplitude while the slacker the sieve mat initially is, the smaller amplitude it will accomplish. And an increase in the rotation speed could cause a rise in the vibratory amplitude. Unlike the two factors, the hardness does not have a definite effect on the kinematic performance, on which a further study is required. Finally, screening processing on a laboratory prototype was conducted to draw the conclusion that the developed CFS also has a high sieving efficiency for the fine and moist coal.
基金National Natural Science Foundation of China(No.61562057)Gansu Science and Technology Plan Project(No.18JR3RA104)。
文摘With the development of short video industry,video and bullet screen have become important ways to spread public opinions.Public attitudes can be timely obtained through emotional analysis on bullet screen,which can also reduce difficulties in management of online public opinions.A convolutional neural network model based on multi-head attention is proposed to solve the problem of how to effectively model relations among words and identify key words in emotion classification tasks with short text contents and lack of complete context information.Firstly,encode word positions so that order information of input sequences can be used by the model.Secondly,use a multi-head attention mechanism to obtain semantic expressions in different subspaces,effectively capture internal relevance and enhance dependent relationships among words,as well as highlight emotional weights of key emotional words.Then a dilated convolution is used to increase the receptive field and extract more features.On this basis,the above multi-attention mechanism is combined with a convolutional neural network to model and analyze the seven emotional categories of bullet screens.Testing from perspectives of model and dataset,experimental results can validate effectiveness of our approach.Finally,emotions of bullet screens are visualized to provide data supports for hot event controls and other fields.
文摘The synthetic index K s for evaluating flip-flow screens is proposed and systematically optimized in view of the whole system. A series of optimized values of relevant parameters are found and then compared with those of the current industrial specifications. The results show that the optimized value K s approaches the one of those famous flip-flow screens in the world. Some new findings on geometric and kinematics parameters are useful for improving the flip-flow screens with a low K s value, which is helpful in developing clean coal technology.
文摘The agglomeration of moist fine coal and the mechanism of aperture blinding in screening were analyzed. The theoretical analysis and a pilot test on that the elastic screen mesh can overcome the aperture blinding problem were presented.
文摘Based on economic theories, the paper studies the personnel selection at the asymmetric job market using signaling and screening model. The authors hold the opinion that an organization can screen the candidates' signaling based on the self-selection principle by providing an appropriate compensation choice. A pay-based screening mechanism is proposed to help the organization drive away the nonqualified applicants and retain the excellent applicants.
基金supported by the Anhui Province Major Science and Technology Achievements Engineering Research and Development Special Project(grant No.202103c08020007)the Fundamental Research Funds for the Central Universities(grant No.2022YJSHH15).
文摘Discrete element method(DEM)is an effective approach for studying the screening process of flip-flow screens.However,there have been few studies focusing on the thick layer of sticky-wet particles on flip-flow screens.To achieve accurate simulations of the thick layer of sticky-wet particles on a flip-flow screen,firstly,the movement law of particle flow was studied,and a multi-regime combination cali-bration method based on characteristics of particle flow regimes was proposed.Based on the Plackett-Burman experiment,the curse of dimensionality caused by multi-state and multi-contact parameters was overcome.Subsequently,the lifting cylinder,rotating drum,and trampoline tests were carried out to obtain macroscopic reference values under various granular flow regimes.The calibration results were then determined using the response surface method and climbing algorithm.Finally,the calibration results were tested at both macroscopic and mesoscopic scales and compared with a commonly used calibration method.The results demonstrate that the calibration method,which considers the multi-state characteristics,improves simulation accuracy by 2%-10%and reduces the simulation error to less than 10%,thus meeting the requirements for engineering optimization of flip-flow screens.