Until recently,it is believed that the rupture speed above the pressure wave is impossible since spontaneously propagating ruptures are driven by the energy released due to the rupture motion,which is transferred thro...Until recently,it is believed that the rupture speed above the pressure wave is impossible since spontaneously propagating ruptures are driven by the energy released due to the rupture motion,which is transferred through the medium to the rupture tip region at the maximum speed equal to the pressure wave speed.However,the apparent violation of classic theories has been revealed by new experimental results demonstrating supersonic shear ruptures.This paper presents a detailed analysis of the recently discovered shear rupture mechanism(fan hinged),which suggests a new physics of energy supply to the tip of supersonic ruptures.The key element of this mechanism is the fan‐shaped structure of the head of extreme ruptures,which is formed as a result of an intense tensile cracking process with the creation of intercrack slabs that act as hinges between the shearing rupture faces.The fan structure is featured with the following extraordinary properties:extremely low friction approaching zero;amplification of shear stresses above the material strength at low applied shear stresses;creation of a self‐disbalancing stress state causing a spontaneous rupture growth;abnormally high energy release;generation of driving energy directly at the rupture tip which excludes the need to transfer energy through the medium.The fan mechanism operates in intact rocks at stress conditions corresponding to seismogenic depths and in pre‐existing extremely smooth interfaces due to identical tensile cracking processes at these conditions.This is Paper 1(of two companion papers)which discusses the fan theory and extreme ruptures in experiments on extremely smooth interfaces.Paper 2 entitled“Fan‐hinged shear instead of frictional stick‐slip as the main and most dangerous mechanism of natural,induced and volcanic earthquakes in the earth's crust”considers extreme ruptures in intact rocks.Further study of this subject is a major challenge for deep underground science,earthquake and fracture mechanics,physics,and tribology.展开更多
文摘Until recently,it is believed that the rupture speed above the pressure wave is impossible since spontaneously propagating ruptures are driven by the energy released due to the rupture motion,which is transferred through the medium to the rupture tip region at the maximum speed equal to the pressure wave speed.However,the apparent violation of classic theories has been revealed by new experimental results demonstrating supersonic shear ruptures.This paper presents a detailed analysis of the recently discovered shear rupture mechanism(fan hinged),which suggests a new physics of energy supply to the tip of supersonic ruptures.The key element of this mechanism is the fan‐shaped structure of the head of extreme ruptures,which is formed as a result of an intense tensile cracking process with the creation of intercrack slabs that act as hinges between the shearing rupture faces.The fan structure is featured with the following extraordinary properties:extremely low friction approaching zero;amplification of shear stresses above the material strength at low applied shear stresses;creation of a self‐disbalancing stress state causing a spontaneous rupture growth;abnormally high energy release;generation of driving energy directly at the rupture tip which excludes the need to transfer energy through the medium.The fan mechanism operates in intact rocks at stress conditions corresponding to seismogenic depths and in pre‐existing extremely smooth interfaces due to identical tensile cracking processes at these conditions.This is Paper 1(of two companion papers)which discusses the fan theory and extreme ruptures in experiments on extremely smooth interfaces.Paper 2 entitled“Fan‐hinged shear instead of frictional stick‐slip as the main and most dangerous mechanism of natural,induced and volcanic earthquakes in the earth's crust”considers extreme ruptures in intact rocks.Further study of this subject is a major challenge for deep underground science,earthquake and fracture mechanics,physics,and tribology.