The interface deformation and liquid breakup in vapor-liquid two-phase flow are ubiquitous in natural phenomena and industrial applications.It is crucial to understand the corresponding mechanism correctly.The droplet...The interface deformation and liquid breakup in vapor-liquid two-phase flow are ubiquitous in natural phenomena and industrial applications.It is crucial to understand the corresponding mechanism correctly.The droplet and liquid ligament dynamic behaviors are investigated in this work by simulating three benchmark cases through adopting a three-dimensional(3D)phase-field-based lattice Boltzmann model,and vapor-liquid phase interface deformation and liquid breakup mechanisms including the capillary instability and end-pinching mechanism are analyzed.The analysis results show that the capillary instability is the driving mechanism of the liquid breakup and the secondary droplet production at a large Weber number,which is different from the Rayleigh-Taylor instability and Kelvin-Helmholtz instability characterizing the vapor-liquid interface deformation.In addition,as another liquid breakup mechanism,the end-pinching mechanism,which describes the back-flow phenomenon of the liquid phase,works at each breakup point,thus resulting in capillary instability on the liquid phase structure.In essence,it is the fundamental mechanism for the liquid breakup and the immanent cause of capillary instability.展开更多
Dyke swarms can be divided into three types:parallel dyke swarms,radiating dyke swarms and fan-shape dyke swarm,for which the mechanisms of formation are different(Fig.1).Parallel dyke swarms form in response
The mechanism of the breakup of supercontinent is a scientific frontier in the field of supercontinent study.The rifting and breakup of supercontinent has long been considered to be related to mantle plume.Paleo-
Ice jams and ice dams in rivers will cause significant rises of water levels. Under extreme conditions, the ice flooding during winter or early spring may occur. In this paper, by considering the fluid-solid coupling ...Ice jams and ice dams in rivers will cause significant rises of water levels. Under extreme conditions, the ice flooding during winter or early spring may occur. In this paper, by considering the fluid-solid coupling effect caused by the water and the ice cover, the mechanisms of the mechanical breakup of the river ice cover are studied. A formula is obtained for determining whether or not the mechanical breakup process would happen under the hydraulic pressure of the flow. Combined with the hydraulic model under the ice covered flow, a numerical model is built and the interaction between the discharge, the hydraulic pressure under the ice cover and the date for the mechanical breakup of the river ice cover is simulated. The simulated results of the dates for the mecha- nical breakup of the river ice cover agree very well with the field observations of the breakups of the river ice cover in the Hequ Reach of the Yellow River. Therefore, the numerical model might serve as a good preliminary step in studying the breakup of the river ice-cover, evidencing many important parameters that affect the ice-cover process,展开更多
By releasing liquid drops in turbulent jet flows,we investigated the transformation of single drop breakup from binary to ternary and multiple.Silicone oil and deionized water were the dispersed phase and continuous p...By releasing liquid drops in turbulent jet flows,we investigated the transformation of single drop breakup from binary to ternary and multiple.Silicone oil and deionized water were the dispersed phase and continuous phase,respectively.The probability of binary,ternary,and multiple breakup of oil drops in jet flows is a function of the jet Reynolds number.To address the underlying mechanisms of this transformation of drop breakup,we performed two-dimensional particle image velocimetry(PIV)experiments of single-phase jet flows.With the combination of drop breakup phenomenon and two-dimensional PIV results in a single-phase flow field,these transformation conditions can be estimated:the capillary number ranges from 0.17 to 0.27,and the Weber number ranges from 55 to 111.展开更多
Although data for temporal spring river ice breakup are available for a number of Arctic rivers, there is a paucity of information related to the type of breakup. The Arctic Climate Impact Assessment (ACIA) of 2005 pr...Although data for temporal spring river ice breakup are available for a number of Arctic rivers, there is a paucity of information related to the type of breakup. The Arctic Climate Impact Assessment (ACIA) of 2005 predicted a transition from mechanical to thermal spring breakup of ice cover on arctic rivers, with this shift being greatest in exclusively Arctic watersheds where observed warming is most pronounced. We describe a rare instance of an entirely Arctic river with limited but well documented historical and recent data regarding the type of breakup. Time-series ground imagery of spring breakup from 1966, 1975, 1978, 2009, 2010 and 2012, incombination with interviews of local inhabitants, documents a shift from predominantly mechanical to predominantly thermal breakup after spring 1978 and by spring 2009 within the context of a locally and regionally warming Arctic. The resultant shift from predominantly mechanical to predominantly thermal breakup is predicted to result in significant changes to water, sediment, nutrient and organic carbon fluxes, as well as riparian ecology and human activities.展开更多
基金the National Natural Science Foundation of China(Grant No.51776031)the Fundamental Research Funds for Zhejiang Provincial Universities and Research Institutes,Chinathe Key Project of Science and Technology Development of Henan Province,China(Grant No.222102220033)。
文摘The interface deformation and liquid breakup in vapor-liquid two-phase flow are ubiquitous in natural phenomena and industrial applications.It is crucial to understand the corresponding mechanism correctly.The droplet and liquid ligament dynamic behaviors are investigated in this work by simulating three benchmark cases through adopting a three-dimensional(3D)phase-field-based lattice Boltzmann model,and vapor-liquid phase interface deformation and liquid breakup mechanisms including the capillary instability and end-pinching mechanism are analyzed.The analysis results show that the capillary instability is the driving mechanism of the liquid breakup and the secondary droplet production at a large Weber number,which is different from the Rayleigh-Taylor instability and Kelvin-Helmholtz instability characterizing the vapor-liquid interface deformation.In addition,as another liquid breakup mechanism,the end-pinching mechanism,which describes the back-flow phenomenon of the liquid phase,works at each breakup point,thus resulting in capillary instability on the liquid phase structure.In essence,it is the fundamental mechanism for the liquid breakup and the immanent cause of capillary instability.
文摘Dyke swarms can be divided into three types:parallel dyke swarms,radiating dyke swarms and fan-shape dyke swarm,for which the mechanisms of formation are different(Fig.1).Parallel dyke swarms form in response
文摘The mechanism of the breakup of supercontinent is a scientific frontier in the field of supercontinent study.The rifting and breakup of supercontinent has long been considered to be related to mantle plume.Paleo-
基金supported by the National Natural Science Foundation of China (Grant No. 50979021)the Natural Science Foundation of Anhui Province (Grant No. 090415217)supported by the Hefei University of Technology (Grant No. GDBJ2008-020-Seed Grant for Ph. D.)
文摘Ice jams and ice dams in rivers will cause significant rises of water levels. Under extreme conditions, the ice flooding during winter or early spring may occur. In this paper, by considering the fluid-solid coupling effect caused by the water and the ice cover, the mechanisms of the mechanical breakup of the river ice cover are studied. A formula is obtained for determining whether or not the mechanical breakup process would happen under the hydraulic pressure of the flow. Combined with the hydraulic model under the ice covered flow, a numerical model is built and the interaction between the discharge, the hydraulic pressure under the ice cover and the date for the mechanical breakup of the river ice cover is simulated. The simulated results of the dates for the mecha- nical breakup of the river ice cover agree very well with the field observations of the breakups of the river ice cover in the Hequ Reach of the Yellow River. Therefore, the numerical model might serve as a good preliminary step in studying the breakup of the river ice-cover, evidencing many important parameters that affect the ice-cover process,
基金financial supports from the National Key Research and Development Program of China(2016YFB0302801)National Natural Science Foundation of China(21676007)+1 种基金Fundamental Research Funds for the Central Universities(XK1802-1)Scientific Research and Technology Development Projects of China National Petroleum Corporation(2016B2605)。
文摘By releasing liquid drops in turbulent jet flows,we investigated the transformation of single drop breakup from binary to ternary and multiple.Silicone oil and deionized water were the dispersed phase and continuous phase,respectively.The probability of binary,ternary,and multiple breakup of oil drops in jet flows is a function of the jet Reynolds number.To address the underlying mechanisms of this transformation of drop breakup,we performed two-dimensional particle image velocimetry(PIV)experiments of single-phase jet flows.With the combination of drop breakup phenomenon and two-dimensional PIV results in a single-phase flow field,these transformation conditions can be estimated:the capillary number ranges from 0.17 to 0.27,and the Weber number ranges from 55 to 111.
文摘Although data for temporal spring river ice breakup are available for a number of Arctic rivers, there is a paucity of information related to the type of breakup. The Arctic Climate Impact Assessment (ACIA) of 2005 predicted a transition from mechanical to thermal spring breakup of ice cover on arctic rivers, with this shift being greatest in exclusively Arctic watersheds where observed warming is most pronounced. We describe a rare instance of an entirely Arctic river with limited but well documented historical and recent data regarding the type of breakup. Time-series ground imagery of spring breakup from 1966, 1975, 1978, 2009, 2010 and 2012, incombination with interviews of local inhabitants, documents a shift from predominantly mechanical to predominantly thermal breakup after spring 1978 and by spring 2009 within the context of a locally and regionally warming Arctic. The resultant shift from predominantly mechanical to predominantly thermal breakup is predicted to result in significant changes to water, sediment, nutrient and organic carbon fluxes, as well as riparian ecology and human activities.