In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis...In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming.展开更多
The rate of hydrothermal reaction of SiO_2 and/or A1_2O_3 in the system of CaO-Al_2O_3-SiO_2-H_2O at 200℃ and the factors which influence the reactions are investigated by determining the reaction ratio.The rate of r...The rate of hydrothermal reaction of SiO_2 and/or A1_2O_3 in the system of CaO-Al_2O_3-SiO_2-H_2O at 200℃ and the factors which influence the reactions are investigated by determining the reaction ratio.The rate of reactions depends on the reactive activities of raw materials, initial composition of mixture and relative activity of SiO_2 and A12O3. The hydrothermal reaction can be accelerated by sodium hydroxide,in the case of silica,which has low activity, this is quite obvious.展开更多
When building an experimental platform for light propagation along an inhomogeneous turbulent path,it is very essential to set up the reasonable distribution of phase screen.Based on multi-layered model of phase scree...When building an experimental platform for light propagation along an inhomogeneous turbulent path,it is very essential to set up the reasonable distribution of phase screen.Based on multi-layered model of phase screen,an iterative optimization algorithm of phase screen position is given in this paper.Thereafter,the optimal position of phase screens is calculated under the Hufnagel-Valley5/7 and Hefei-day turbulence profile.The results show that the positions of phase screen calculated by the iterative algorithm can fit well with the turbulence profile rather than mechanically placed phase screens at equal distance.Compared with the uniform distribution of phase screens position,the residual phase error of the iterative algorithm decreases very significantly.The similarity degree between them is minimal when number of layers is equal to two.展开更多
Fatigue crack growth behaviors in electron beam weldments of a nickel-base superalloy are studied. The objective of this paper is to discuss effects of the inhomogeneity of mechanical performance on fatigue crack grow...Fatigue crack growth behaviors in electron beam weldments of a nickel-base superalloy are studied. The objective of this paper is to discuss effects of the inhomogeneity of mechanical performance on fatigue crack growth (FCG) rate and crack path deviation (CPD). The base metal served in a turbine disk of aerospace engine was selected to fabricate bead-on-plate weldments by using electron beam welding. Some wedge-type opening loading specimens, notched in three different zone of weld metal, HAZ and base metal, were employed and performed fatigue crack growth tests at 650℃. The results show that the fatigue crack growth of electron beam welded joints is instable due to the influence of mechanical heterogeneities. Owing to the crack deviation at the weld metal and heat-affected-zone (HAZ), the effective growth driving force at the tip of fatigue crack was reduced with the reduction of the effective stress intensity factor (SIF) which finally causes fatigue crack rate decrease. Fatigue crack was strongly affected by size and the symmetrical characteristics of the plastic zone at the crack tip, which means that the integrity of the welded structure containing the fatigue crack mainly depended on the toughness of the low strength zone.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51375346)Doctoral Fund of Ministry of Education of China(Grant No.20110072110056)
文摘In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming.
基金National H-Tech Program under contract 863-7152101
文摘The rate of hydrothermal reaction of SiO_2 and/or A1_2O_3 in the system of CaO-Al_2O_3-SiO_2-H_2O at 200℃ and the factors which influence the reactions are investigated by determining the reaction ratio.The rate of reactions depends on the reactive activities of raw materials, initial composition of mixture and relative activity of SiO_2 and A12O3. The hydrothermal reaction can be accelerated by sodium hydroxide,in the case of silica,which has low activity, this is quite obvious.
基金Project supported by the National Natural Science Foundation of China(Grant No.61308082)
文摘When building an experimental platform for light propagation along an inhomogeneous turbulent path,it is very essential to set up the reasonable distribution of phase screen.Based on multi-layered model of phase screen,an iterative optimization algorithm of phase screen position is given in this paper.Thereafter,the optimal position of phase screens is calculated under the Hufnagel-Valley5/7 and Hefei-day turbulence profile.The results show that the positions of phase screen calculated by the iterative algorithm can fit well with the turbulence profile rather than mechanically placed phase screens at equal distance.Compared with the uniform distribution of phase screens position,the residual phase error of the iterative algorithm decreases very significantly.The similarity degree between them is minimal when number of layers is equal to two.
基金National Defense Key Lab for High Energy Density Beam Technology in China for the financial support.
文摘Fatigue crack growth behaviors in electron beam weldments of a nickel-base superalloy are studied. The objective of this paper is to discuss effects of the inhomogeneity of mechanical performance on fatigue crack growth (FCG) rate and crack path deviation (CPD). The base metal served in a turbine disk of aerospace engine was selected to fabricate bead-on-plate weldments by using electron beam welding. Some wedge-type opening loading specimens, notched in three different zone of weld metal, HAZ and base metal, were employed and performed fatigue crack growth tests at 650℃. The results show that the fatigue crack growth of electron beam welded joints is instable due to the influence of mechanical heterogeneities. Owing to the crack deviation at the weld metal and heat-affected-zone (HAZ), the effective growth driving force at the tip of fatigue crack was reduced with the reduction of the effective stress intensity factor (SIF) which finally causes fatigue crack rate decrease. Fatigue crack was strongly affected by size and the symmetrical characteristics of the plastic zone at the crack tip, which means that the integrity of the welded structure containing the fatigue crack mainly depended on the toughness of the low strength zone.