Based on the data of field outcrops,drilling cores,casting thin sections,well logging interpretation,oil/gas shows during drilling,and oil/gas testing results,and combined with modern salt-lake sediments in the Qingha...Based on the data of field outcrops,drilling cores,casting thin sections,well logging interpretation,oil/gas shows during drilling,and oil/gas testing results,and combined with modern salt-lake sediments in the Qinghai Lake,the Neogene saline lake beach-bars in southwestern Qaidam Basin are studied from the perspective of sedimentary characteristics,development patterns,sand control factors,and hydrocarbon accumulation characteristics.Beach-bar sand bodies are widely developed in the Neogene saline lake basin,and they are lithologically fine sandstone and siltstone,with wavy bedding,low-angle cross bedding,and lenticular-vein bedding.In view of spatial-temporal distribution,the beach-bar sand bodies are stacked in multiple stages vertically,migratory laterally,and extensive and continuous in NW-SE trending pattern in the plane.The stacking area of the Neogene beach-bar sandstone is predicted to be 3000 km^(2).The water salinity affects the sedimentation rate and offshore distance of beach-bar sandstone,and the debris input from the source area affects the scale and enrichment of beach-bar sandstone.The ancient landform controls the morphology and stacking style of beach-bar sandstone,and the northwest monsoon driving effect controls the long-axis extension direction of beach-bar sandstone.The beach-bars have a reservoir-forming feature of“one reservoir in one sand body”,with thick beach-bar sand bodies controlling the effective reservoir distribution and oil-source faults controlling the oil/gas migration and accumulation direction.Three favorable exploration target zones in Zhahaquan,Yingdong-eastern Wunan and Huatugou areas are proposed based on the analysis of reservoir-forming elements.展开更多
Desertification is one of the most serious environmental problems in the world,especially in the arid desert regions.Combating desertification,therefore,is an urgent task on a regional or even global scale.The Taklima...Desertification is one of the most serious environmental problems in the world,especially in the arid desert regions.Combating desertification,therefore,is an urgent task on a regional or even global scale.The Taklimakan Desert in China is the second largest mobile desert in the world and has been called the''Dead Sea''due to few organisms can exist in such a harsh environment.The Taklimakan Desert Highway,the longest desert highway(a total length of 446 km)across the mobile desert in the world,was built in the 1990s within the Taklimakan Desert.It has an important strategic significance regarding oil and gas resources exploration and plays a vital role in the socio-economic development of southern Xinjiang,China.However,wind-blow sand seriously damages the smoothness of the desert highway and,in this case,mechanical sand control system(including sand barrier fences and straw checkerboards)was used early in the life of the desert highway to protect the road.Unfortunately,more than 70%of the sand barrier fences and straw checkerboards have lost their functions,and the desert highway has often been buried and frequently blocked since 1999.To solve this problem,a long artificial shelterbelt with the length of 437 km was built along the desert highway since 2000.However,some potential problems still exist for the sustainable development of the desert highway,such as water shortage,strong sandstorms,extreme environmental characteristics and large maintenance costs.The study aims to provide an overview of the damages caused by wind-blown sand and the effects of sand control measures along the Taklimakan Desert Highway.Ultimately,we provide some suggestions for the biological sand control system to ensure the sustainable development of the Taklimakan Desert Highway,such as screening drought-resistant species to reduce the irrigation requirement and ensure the sound development of groundwater,screening halophytes to restore vegetation in the case of soil salinization,and planting cash crops,such as Cistanche,Wolfberry,Apocynum and other cash crops to decrease the high cost of maintenance on highways and shelterbelts.展开更多
Typical effects of coarse and fine aggregates on the long-term properties of sea sand recycled aggregate concrete(SSRAC)are analyzed by a series of axial compression tests.Two different types of fine(coarse)aggregates...Typical effects of coarse and fine aggregates on the long-term properties of sea sand recycled aggregate concrete(SSRAC)are analyzed by a series of axial compression tests.Two different types of fine(coarse)aggregates are considered:sea sand and river sand(natural and recycled coarse aggregates).Variations in SSRAC properties at different ages are investigated.A novel test system is developed via axial compression experiments and the digital image correlation method to obtain the deformation field and crack development of concrete.Supportive results show that the compressive strength of SSRAC increase with decreasing recycled coarse aggregate replacement percentage and increasing sea sand chloride ion content.The elastic modulus of SSRAC increases with age.However,the Poisson’s ratio reduces after 2 years.Typical axial stress-strain curves of SSRAC vary with age.Generally,the effect of coarse aggregates on the axial deformation of SSRAC is clear;however,the deformation differences between coarse aggregate and cement mortar reduce by adopting sea sand.The aggregate type changes the crack characteristics and propagation of SSRAC.Finally,an analytical expression is suggested to construct the long-term stress-strain curve of SSRAC.展开更多
Based on seismic and logging data,taking the downthrow fault nose of Binhai fault in Qikou Sag as the object of study,we analyzed fault characteristics,sand body distribution,fault-sand combinations and hydrocarbon ac...Based on seismic and logging data,taking the downthrow fault nose of Binhai fault in Qikou Sag as the object of study,we analyzed fault characteristics,sand body distribution,fault-sand combinations and hydrocarbon accumulation to reveal the hydrocarbon enrichment law in the fault-rich area of fault depression lake basin.The results show that the Binhai Cenozoic fault nose is characterized by east-west zoning,the main part of the western fault segment is simple in structure,whereas the broom-shaped faults in the eastern segment are complex in structure,including several groups of faults.The difference of fault evolution controls the spatial distribution of sand bodies.The sand bodies are in continuous large pieces in the downthrow fault trough belt along the Gangdong Fault in the middle segment of the fault nose,forming consequent fault-sand combination;whereas the fault activity period of the eastern part of the fault nose was later,and the sand bodies controlled by paleogeomorphology are distributed in multi-phase north-south finger-shaped pattern,forming vertical fault-sand combination pattern matching with the fault.The configuration between faults and sand bodies,and oil sources and caprocks determine the vertical conductivity,plane distribution and vertical distribution of oil and gas.Two oil and gas accumulation modes,i.e.single main fault hydrocarbon supply-fault sand consequent matching-oil accumulation in multi-layers stereoscopically and fault system transportation-fault sand vertical matching-oil accumulation in banded overlapping layers occur in the middle and eastern segments of the fault nose respectively,and they control the difference of oil and gas distribution and enrichment degree in the Binhai fault nose.展开更多
基金Supported by the PetroChina Science and Technology Project (2021DJ0402,2021DJ0202)。
文摘Based on the data of field outcrops,drilling cores,casting thin sections,well logging interpretation,oil/gas shows during drilling,and oil/gas testing results,and combined with modern salt-lake sediments in the Qinghai Lake,the Neogene saline lake beach-bars in southwestern Qaidam Basin are studied from the perspective of sedimentary characteristics,development patterns,sand control factors,and hydrocarbon accumulation characteristics.Beach-bar sand bodies are widely developed in the Neogene saline lake basin,and they are lithologically fine sandstone and siltstone,with wavy bedding,low-angle cross bedding,and lenticular-vein bedding.In view of spatial-temporal distribution,the beach-bar sand bodies are stacked in multiple stages vertically,migratory laterally,and extensive and continuous in NW-SE trending pattern in the plane.The stacking area of the Neogene beach-bar sandstone is predicted to be 3000 km^(2).The water salinity affects the sedimentation rate and offshore distance of beach-bar sandstone,and the debris input from the source area affects the scale and enrichment of beach-bar sandstone.The ancient landform controls the morphology and stacking style of beach-bar sandstone,and the northwest monsoon driving effect controls the long-axis extension direction of beach-bar sandstone.The beach-bars have a reservoir-forming feature of“one reservoir in one sand body”,with thick beach-bar sand bodies controlling the effective reservoir distribution and oil-source faults controlling the oil/gas migration and accumulation direction.Three favorable exploration target zones in Zhahaquan,Yingdong-eastern Wunan and Huatugou areas are proposed based on the analysis of reservoir-forming elements.
基金This work was supported by the National Natural Science Foundation of China(31971731,41771121)the Xinjiang National Key Research and Development Program(2019B00005)+1 种基金the National Key Research and Development Program(2017YFC0506705)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2017476).
文摘Desertification is one of the most serious environmental problems in the world,especially in the arid desert regions.Combating desertification,therefore,is an urgent task on a regional or even global scale.The Taklimakan Desert in China is the second largest mobile desert in the world and has been called the''Dead Sea''due to few organisms can exist in such a harsh environment.The Taklimakan Desert Highway,the longest desert highway(a total length of 446 km)across the mobile desert in the world,was built in the 1990s within the Taklimakan Desert.It has an important strategic significance regarding oil and gas resources exploration and plays a vital role in the socio-economic development of southern Xinjiang,China.However,wind-blow sand seriously damages the smoothness of the desert highway and,in this case,mechanical sand control system(including sand barrier fences and straw checkerboards)was used early in the life of the desert highway to protect the road.Unfortunately,more than 70%of the sand barrier fences and straw checkerboards have lost their functions,and the desert highway has often been buried and frequently blocked since 1999.To solve this problem,a long artificial shelterbelt with the length of 437 km was built along the desert highway since 2000.However,some potential problems still exist for the sustainable development of the desert highway,such as water shortage,strong sandstorms,extreme environmental characteristics and large maintenance costs.The study aims to provide an overview of the damages caused by wind-blown sand and the effects of sand control measures along the Taklimakan Desert Highway.Ultimately,we provide some suggestions for the biological sand control system to ensure the sustainable development of the Taklimakan Desert Highway,such as screening drought-resistant species to reduce the irrigation requirement and ensure the sound development of groundwater,screening halophytes to restore vegetation in the case of soil salinization,and planting cash crops,such as Cistanche,Wolfberry,Apocynum and other cash crops to decrease the high cost of maintenance on highways and shelterbelts.
基金the support provided by the National Natural Science Foundation of China(Grant Nos.51408346,51978389)the Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Structural Safety(No.2019ZDK035)the Opening Foundation of the Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation(No.CDPM2019KF12).
文摘Typical effects of coarse and fine aggregates on the long-term properties of sea sand recycled aggregate concrete(SSRAC)are analyzed by a series of axial compression tests.Two different types of fine(coarse)aggregates are considered:sea sand and river sand(natural and recycled coarse aggregates).Variations in SSRAC properties at different ages are investigated.A novel test system is developed via axial compression experiments and the digital image correlation method to obtain the deformation field and crack development of concrete.Supportive results show that the compressive strength of SSRAC increase with decreasing recycled coarse aggregate replacement percentage and increasing sea sand chloride ion content.The elastic modulus of SSRAC increases with age.However,the Poisson’s ratio reduces after 2 years.Typical axial stress-strain curves of SSRAC vary with age.Generally,the effect of coarse aggregates on the axial deformation of SSRAC is clear;however,the deformation differences between coarse aggregate and cement mortar reduce by adopting sea sand.The aggregate type changes the crack characteristics and propagation of SSRAC.Finally,an analytical expression is suggested to construct the long-term stress-strain curve of SSRAC.
基金Supported by the China National Science and Technology Major Project(2016ZX05006).
文摘Based on seismic and logging data,taking the downthrow fault nose of Binhai fault in Qikou Sag as the object of study,we analyzed fault characteristics,sand body distribution,fault-sand combinations and hydrocarbon accumulation to reveal the hydrocarbon enrichment law in the fault-rich area of fault depression lake basin.The results show that the Binhai Cenozoic fault nose is characterized by east-west zoning,the main part of the western fault segment is simple in structure,whereas the broom-shaped faults in the eastern segment are complex in structure,including several groups of faults.The difference of fault evolution controls the spatial distribution of sand bodies.The sand bodies are in continuous large pieces in the downthrow fault trough belt along the Gangdong Fault in the middle segment of the fault nose,forming consequent fault-sand combination;whereas the fault activity period of the eastern part of the fault nose was later,and the sand bodies controlled by paleogeomorphology are distributed in multi-phase north-south finger-shaped pattern,forming vertical fault-sand combination pattern matching with the fault.The configuration between faults and sand bodies,and oil sources and caprocks determine the vertical conductivity,plane distribution and vertical distribution of oil and gas.Two oil and gas accumulation modes,i.e.single main fault hydrocarbon supply-fault sand consequent matching-oil accumulation in multi-layers stereoscopically and fault system transportation-fault sand vertical matching-oil accumulation in banded overlapping layers occur in the middle and eastern segments of the fault nose respectively,and they control the difference of oil and gas distribution and enrichment degree in the Binhai fault nose.