期刊文献+
共找到6,026篇文章
< 1 2 250 >
每页显示 20 50 100
Robust interface and excellent as-built mechanical properties of Ti–6Al–4V fabricated through laser-aided additive manufacturing with powder and wire
1
作者 Fei Weng Guijun Bi +5 位作者 Youxiang Chew Shang Sui Chaolin Tan Zhenglin Du Jinlong Su Fern Lan Ng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期154-168,共15页
The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully ci... The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition. 展开更多
关键词 laser-aided additive manufacturing powder deposition wire deposition interfacial characteristic mechanical behavior
下载PDF
Mechanical behavior and response mechanism of porous metal structures manufactured by laser powder bed fusion under compressive loading 被引量:1
2
作者 Xuanming Cai Yang Hou +6 位作者 Wei Zhang Zhiqiang Fan Yubo Gao Junyuan Wang Heyang Sun Zhujun Zhang Wenshu Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期737-749,共13页
Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an ur... Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an urgent need to comprehensively understand the mechanical behavior and response mechanism of AlSi10Mg porous structures under compressive loading.In this paper,Al Si10Mg porous structures with three kinds of volume fractions are designed and optimized to meet the requirements of high-impact,strong-energy absorption,and lightweight characteristics.The mechanical behaviors of AlSi10Mg porous structures,including the stress-strain relationship,structural bearing state,deformation and damage modes,and energy absorption characteristics,were obtained through experimental studies at different loading rates.The damage pattern of the damage section indicates that AlSi10Mg porous structures have both ductile and brittle mechanical properties.Numerical simulation studies show that the AlSi10Mg porous structure undergoes shear damage due to relative misalignment along the diagonal cross-section,and the damage location is almost at 45°to the load direction,which is the most direct cause of its structural damage,revealing the damage mechanism of AlSi10Mg porous structures under the compressive load.The normalized energy absorption model constructed in the paper well interprets the energy absorption state of Al Si10Mg porous structures and gives the sensitive location of the structures,and the results of this paper provide important references for peers in structural design and optimization. 展开更多
关键词 AlSi10Mg additive manufacture energy absorption characteristics damage by deformation mechanical behavior
下载PDF
Practice Teaching Reform of Mechanical Design and Manufacture and Its Automation Specialty under Transformation and Development
3
作者 Qian Yi 《Review of Educational Theory》 2018年第2期48-51,共4页
With the development of the times, undergraduate colleges and universities begin to transform and develop to adapt to the changing society, and put forward new requirements for practical teaching strategies, especiall... With the development of the times, undergraduate colleges and universities begin to transform and develop to adapt to the changing society, and put forward new requirements for practical teaching strategies, especially for applied undergraduate colleges. The reform of practical teaching is particularly important. Under the development of education transformation, the reform of mechanical design and manufacture and the practice teaching of automation specialty also occupy a very important position. Through the understanding of the reform of the practical teaching of this specialty, the effect of the reform is observed, and a reasonable teaching scheme is put forward to promote the steps of the transformation of the practical teaching. 展开更多
关键词 mechanical design mechanical manufacturing mechanical automation SPECIALTY Practical teaching of TRANSFORMATION and DEVELOPMENT
下载PDF
Effect of thermo-mechanical treatment on microstructure and mechanical properties of wire-arc additively manufactured Al-Cu alloy
4
作者 ZHANG Tao QIN Zhen-yang +2 位作者 GONG Hai WU Yun-xin CHEN Xin 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2181-2193,共13页
Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolli... Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolling and thermo-mechanical heat treatment(T8)with pre-stretching deformation between solution and aging treatment were adopted in this study.Their effects on hardness,mechanical properties and microstructure were analyzed and compared to the conventional heat treatment(T6).The results show that cold rolling increases the hardness and strengths,which further increase with T8 treatment.The ultimate tensile strength(UTS)of 513 MPa and yield stress(YS)of 413 MPa can be obtained in the inter-layer cold-rolled sample with T8 treatment,which is much higher than that in the as-deposited samples.The cold-rolled samples show higher elongation than that of as-deposited ones due to significant elimination of porosity in cold rolling;while both the T6 and T8 treatments decrease the elongation.The cold rolling and pre-stretching deformation both contribute to the formation of dense and dispersive precipitatedθ′phases,which inhibits the dislocation movement and enhances the strengths;as a result,T8 treatment shows better strengthening effect than the T6 treatment.The strengthening mechanism was analyzed and it was mainly related to work hardening and precipitation strengthening. 展开更多
关键词 wire-arc additive manufacture inter-layer cold rolling thermal-mechanical treatment microstructure mechanical properties strengthening mechanism
下载PDF
Customized heat treatment process enabled excellent mechanical properties in wire arc additively manufactured Mg-RE-Zn-Zr alloys
5
作者 Dong Ma Chunjie Xu +7 位作者 Shang Sui Yuanshen Qi Can Guo Zhongming Zhang Jun Tian Fanhong Zeng Sergei Remennik Dan Shechtman 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期276-289,共14页
Customized heat treatment is essential for enhancing the mechanical properties of additively manufactured metallic materials,especially for alloys with complex phase constituents and heterogenous microstructure.Howeve... Customized heat treatment is essential for enhancing the mechanical properties of additively manufactured metallic materials,especially for alloys with complex phase constituents and heterogenous microstructure.However,the interrelated evolutions of different microstructure features make it difficult to establish optimal heat treatment processes.Herein,we proposed a method for customized heat treatment process exploration and establishment to overcome this challenge for such kind of alloys,and a wire arc additively manufactured(WAAM)Mg-Gd-Y-Zn-Zr alloy with layered heterostructure was used for feasibility verification.Through this method,the optimal microstructures(fine grain,controllable amount of long period stacking ordered(LPSO)structure and nano-scaleβ'precipitates)and the corresponding customized heat treatment processes(520°C/30 min+200°C/48 h)were obtained to achieve a good combination of a high strength of 364 MPa and a considerable elongation of 6.2%,which surpassed those of other state-of-the-art WAAM-processed Mg alloys.Furthermore,we evidenced that the favorable effect of the undeformed LPSO structures on the mechanical properties was emphasized only when the nano-scaleβ'precipitates were present.It is believed that the findings promote the application of magnesium alloy workpieces and help to establish customized heat treatment processes for additively manufactured materials. 展开更多
关键词 wire arc additive manufacturing heat treatment Mg-RE-Zn-Zr alloys LPSO structure mechanical properties
下载PDF
Microstructure and mechanical properties of GTA-based wire arc additive manufactured AZ91D magnesium alloy
6
作者 Xiaoyu Cai Fukang Chen +2 位作者 Bolun Dong Sanbao Lin Chunli Yang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3180-3192,共13页
Wire arc additive manufacturing offers advantages in producing large metal structures.The current research on GTA-based wire arc additive manufacturing(GTA-WAAM)of magnesium alloys is focused on deformed magnesium all... Wire arc additive manufacturing offers advantages in producing large metal structures.The current research on GTA-based wire arc additive manufacturing(GTA-WAAM)of magnesium alloys is focused on deformed magnesium alloys,mainly on the Mg-Al alloy system.However,there is little research on GTA-WAAM for casting magnesium alloy.This study investigates the microstructural characteristics and mechanical properties of AZ91D magnesium alloy(AZ91D-Mg)deposited by GTA-WAAM.Single-pass multilayer thin-walled components were successfully fabricated.The results show that equiaxed grains dominate the microstructure of the deposited samples.During the remelting process,the precipitated phases dissolve into the matrix,and they precipitate and grow from the matrix under the thermal effect of the subsequent thermal cycle.The mechanical properties in the vertical and horizontal directions are similar,showing higher overall mechanical properties than the casting parts.The average yield strength is 110.5 MPa,the ultimate tensile strength is 243.6 MPa,and the elongation is 11.7%.The overall hardness distribution in the deposited sample is relatively uniform,and the average microhardness is 59.6 HV_(0.2). 展开更多
关键词 GTA Additive manufacturing AZ91D magnesium alloy MICROSTRUCTURE mechanical properties
下载PDF
Characterization and Modeling of Mechanical Properties of Additively Manufactured Coconut Fiber-Reinforced Polypropylene Composites
7
作者 George Mosi Bernard W. Ikua +1 位作者 Samuel K. Kabini James W. Mwangi 《Advances in Materials Physics and Chemistry》 CAS 2024年第6期95-112,共18页
In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and rene... In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and renewable materials as a substitute for synthetic and petroleum-based products. Natural fiber-reinforced polymeric composites have recently been proposed as a viable alternative to synthetic materials. The current work investigates the suitability of coconut fiber-reinforced polypropylene as a structural material. The coconut fiber-reinforced polypropylene composites were developed. Samples of coconut fiber/polypropylene (PP) composites were prepared using Fused Filament Fabrication (FFF). Tests were then conducted on the mechanical properties of the composites for different proportions of coconut fibers. The results obtained indicate that the composites loaded with 2 wt% exhibited the highest tensile and flexural strength, while the ones loaded with 3 wt% had the highest compression strength. The ultimate tensile and flexural strength at 2 wt% were determined to be 34.13 MPa and 70.47 MPa respectively. The compression strength at 3 wt% was found to be 37.88 MPa. Compared to pure polypropylene, the addition of coconut fibers increased the tensile, flexural, and compression strength of the composite. In the study, an artificial neural network model was proposed to predict the mechanical properties of polymeric composites based on the proportion of fibers. The model was found to predict data with high accuracy. 展开更多
关键词 Additive manufacturing Artificial Neural Network mechanical Properties Natural Fibers POLYPROPYLENE
下载PDF
Practical Analysis of Mechanical Automation Technology in Automobile Manufacturing
8
作者 Miao Zhang 《Journal of Electronic Research and Application》 2023年第5期24-29,共6页
In today’s rapidly developing modern society,automobiles,as an important part of transportation and industrial fields,play a pivotal role.With the improvement of people’s living standards and the increase in traffic... In today’s rapidly developing modern society,automobiles,as an important part of transportation and industrial fields,play a pivotal role.With the improvement of people’s living standards and the increase in traffic demand,the automobile manufacturing industry has been continuously developing and growing globally.However,to cope with increasingly fierce market competition and ever-changing consumer demands,the automobile manufacturing industry is also facing the challenges of improving production efficiency,reducing costs,and improving product quality.In this context,automation technology has gradually become a major trend in the automobile manufacturing industry.As an important support of modern industry,automation technology has shown great application potential in many fields.From industrial production to daily life,automation technology can be seen everywhere.In the field of manufacturing,especially in automobile manufacturing,the application of automation technology is getting more and more attention.Automated production lines,intelligent robots,and automated warehousing systems have all changed the face of automobile manufacturing to varying degrees,bringing companies higher efficiency,more stable quality,and greater competitive advantages.The application trend of this automation technology in various fields not only meets the needs of modern industry for efficient,precise,and sustainable development but also provides new ideas and paths for the future development of the automobile manufacturing industry. 展开更多
关键词 mechanical automation technology automobile manufacturing Practical analysis Production efficiency
下载PDF
A review on the multi-scaled structures and mechanical/thermal properties of tool steels fabricated by laser powder bed fusion additive manufacturing 被引量:1
9
作者 Huajing Zong Nan Kang +1 位作者 Zehao Qin Mohamed El Mansori 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1048-1071,共24页
The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF mak... The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF makes it possible to design and produce complex conformal cooling channel systems in molds.Thus,LPBF-processed tool steels have attracted more and more attention.The complex thermal history in the LPBF process makes the microstructural characteristics and properties different from those of conventional manufactured tool steels.This paper provides an overview of LPBF-processed tool steels by describing the physical phenomena,the microstructural characteristics,and the mechanical/thermal properties,including tensile properties,wear resistance,and thermal properties.The microstructural characteristics are presented through a multiscale perspective,ranging from densification,meso-structure,microstructure,substructure in grains,to nanoprecipitates.Finally,a summary of tool steels and their challenges and outlooks are introduced. 展开更多
关键词 additive manufacturing laser powder bed fusion tool steel multi-scaled structure mechanical properties thermal properties
下载PDF
Design and additive manufacturing of bionic hybrid structure inspired by cuttlebone to achieve superior mechanical properties and shape memory function
10
作者 Luhao Yuan Dongdong Gu +8 位作者 Xin Liu Keyu Shi Kaijie Lin He Liu Han Zhang Donghua Dai Jianfeng Sun Wenxin Chen Jie Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第5期189-206,共18页
Lightweight porous materials with high load-bearing,damage tolerance and energy absorption(EA)as well as intelligence of shape recovery after material deformation are beneficial and critical for many applications,e.g.... Lightweight porous materials with high load-bearing,damage tolerance and energy absorption(EA)as well as intelligence of shape recovery after material deformation are beneficial and critical for many applications,e.g.aerospace,automobiles,electronics,etc.Cuttlebone produced in the cuttlefish has evolved vertical walls with the optimal corrugation gradient,enabling stress homogenization,significant load bearing,and damage tolerance to protect the organism from high external pressures in the deep sea.This work illustrated that the complex hybrid wave shape in cuttlebone walls,becoming more tortuous from bottom to top,creates a lightweight,load-bearing structure with progressive failure.By mimicking the cuttlebone,a novel bionic hybrid structure(BHS)was proposed,and as a comparison,a regular corrugated structure and a straight wall structure were designed.Three types of designed structures have been successfully manufactured by laser powder bed fusion(LPBF)with NiTi powder.The LPBF-processed BHS exhibited a total porosity of 0.042% and a good dimensional accuracy with a peak deviation of 17.4μm.Microstructural analysis indicated that the LPBF-processed BHS had a strong(001)crystallographic orientation and an average size of 9.85μm.Mechanical analysis revealed the LPBF-processed BHS could withstand over 25000 times its weight without significant deformation and had the highest specific EA value(5.32 J·g^(−1))due to the absence of stress concentration and progressive wall failure during compression.Cyclic compression testing showed that LPBF-processed BHS possessed superior viscoelastic and elasticity energy dissipation capacity.Importantly,the uniform reversible phase transition from martensite to austenite in the walls enables the structure to largely recover its pre-deformation shape when heated(over 99% recovery rate).These design strategies can serve as valuable references for the development of intelligent components that possess high mechanical efficiency and shape memory capabilities. 展开更多
关键词 additive manufacturing laser powder bed fusion bionic structure CUTTLEBONE mechanical properties shape memory function
下载PDF
Microstructure and Mechanical Properties of Wire + Arc Additively Manufactured 2050 Al–Li Alloy Wall Deposits 被引量:12
11
作者 Hao Zhong Bojin Qi +2 位作者 Baoqiang Cong Zewu Qi Hongye Sun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第6期174-180,共7页
Aluminum–Lithium(Al–Li) alloy is a topic of great interest owing to its high strength and light weight, but there are only a few applications of Al–Li alloy in wire ss, a special AA2050 Al–Li alloy + arc additive ... Aluminum–Lithium(Al–Li) alloy is a topic of great interest owing to its high strength and light weight, but there are only a few applications of Al–Li alloy in wire ss, a special AA2050 Al–Li alloy + arc additive manufacturing(WAAM) process. To identify its feasibility in WAAM procewire was produced and employed in the production of straight-walled components, using a WAAM system based on variable polarity gas tungsten arc welding(VP-GTAW) process. The influence of post-deposited heat treatment on the microstructure and property of the deposit was investigated using optical micrographs(OM), scanning electron microscopy(SEM), X-ray diffraction(XRD), hardness and tensile properties tests. Results revealed that the microstructures of AA2050 aluminum deposits varied with their location layers. The upper layers consisted of fine equiaxed grains, while the bottom layer exhibited a coarse columnar structure. Mechanical properties witnessed a significant improvement after post-deposited heat treatment, with the average micro-hardness reaching 141 HV and the ultimate tensile strength exceeding 400 MPa. Fracture morphology exhibited a typical ductile fracture. 展开更多
关键词 Aluminum-copper-lithium alloy Wire arc additive manufacturing Heat treatment mechanical properties
下载PDF
Mechanical property and biological behaviour of additive manufactured TiNi functionally graded lattice structure 被引量:12
12
作者 Chaolin Tan Cheng Deng +7 位作者 Sheng Li Alessandro Abena Parastoo Jamshidi Khamis Essa Likang Wu Guohua Xu Moataz M Attallah Jia Liu 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第4期207-213,共7页
Bio-inspired porous metallic scaffolds have tremendous potential to be used as artificial bone substitutes.In this work,a radially graded lattice structure (RGLS),which mimics the structures of natural human bones,was... Bio-inspired porous metallic scaffolds have tremendous potential to be used as artificial bone substitutes.In this work,a radially graded lattice structure (RGLS),which mimics the structures of natural human bones,was designed and processed by laser powder bed fusion of martensitic Ti-rich TiNi powder.The asymmetric tension-compression behaviour,where the compressive strength is significantly higher than the tensile strength,is observed in this Ti-rich TiNi material,which echoes the mechanical behaviour of bones.The morphologies,mechanical properties,deformation behaviour,and biological compatibility of RGLS samples were characterised and compared with those in the uniform lattice structure.Both the uniform and RGLS samples achieve a relative density higher than 99%.The graded porosities and pore sizes in the RGLS range from 40%-80% and 330-805 µm,respectively,from the centre to the edge.The chemical etching has significantly removed the harmful partially-melted residual powder particles on the lattice struts.The compressive yield strength of RGLS is 71.5 MPa,much higher than that of the uniform sample (46.5 MPa),despite having a similar relative density of about 46%.The calculated Gibson-Ashby equation and the deformation behaviour simulation by finite element suggest that the dense outer regions with high load-bearing capability could sustain high applied stress,improving the overall strength of RGLS significantly.The cell proliferation study suggests better biological compatibility of the RGLS than the uniform structures.The findings highlight a novel strategy to improve the performance of additively manufactured artificial implants by bio-inspiration. 展开更多
关键词 additive manufacturing BIO-INSPIRED graded lattice mechanical properties biological compatibility
下载PDF
Formability,microstructure evolution and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy using gas tungsten arc welding 被引量:14
13
作者 Yangyang Guo Gaofeng Quan +3 位作者 Yinglong Jiang Lingbao Ren Lingling Fan Houhong Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第1期192-201,共10页
Wire arc additive manufacturing(WAAM)technology has been used to fabricate the multi-layer single-pass deposited wall of AZ80M magnesium(Mg)alloy by gas tungsten arc welding.The formability,thermal cycles,microstructu... Wire arc additive manufacturing(WAAM)technology has been used to fabricate the multi-layer single-pass deposited wall of AZ80M magnesium(Mg)alloy by gas tungsten arc welding.The formability,thermal cycles,microstructural evolution and mechanical properties of the WAAM AZ80M Mg alloy were investigated.The results show that there was significant difference in the temperature variation and the geometries between the original several layers and the subsequent deposited layers.Owing to the arc energy input,the interpass temperature rised rapidly and then stabilized at 150℃.As a result,the width of the deposited wall increased and then kept stable.There were obvious differences in the microstructure of the WAAM AZ80M Mg alloy among the top zone,intermediate zone and bottom zone of deposited wall.During the arc deposition process,theβphase of the WAAM AZ80M Mg alloy redissolved due to the cyclic heat accumulation,and then precipitated in the grain boundary.The cyclic heat accumulation also led to weakening of dendrite segregation.From the substrate to the top zone,the hardness of the deposited wall decreased gradually,and the intermediate zone which was the main body of deposited wall had relatively uniform hardness.The tensile properties of the WAAM AZ80M Mg alloy were different between the vertical direction and the horizontal direction.And the maximum ultimate tensile strength of the WAAM AZ80M Mg alloy was 308 MPa which was close to that of the as-extruded AZ80M Mg alloy. 展开更多
关键词 Wire arc additive manufacturing Magnesium alloy Thermal cycles Microstructure mechanical properties
下载PDF
Microstructures and mechanical properties of Ti−Al−V−Nb alloys with cluster formula manufactured by laser additive manufacturing 被引量:10
14
作者 Tian-yu LIU Xiao-hua MIN +2 位作者 Shuang ZHANG Cun-shan WANG Chuang DONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第10期3012-3023,共12页
Ti−Al−V−Nb alloys with the cluster formula,12[Al−Ti_(12)](AlTi_(2))+5[Al−Ti1_(4)](V,Nb)2Ti,were designed by replacing V with Nb based on the Ti−6Al−4V alloy.Single-track cladding layers and bulk samples of the alloys ... Ti−Al−V−Nb alloys with the cluster formula,12[Al−Ti_(12)](AlTi_(2))+5[Al−Ti1_(4)](V,Nb)2Ti,were designed by replacing V with Nb based on the Ti−6Al−4V alloy.Single-track cladding layers and bulk samples of the alloys with Nb contents ranging from 0 to 6.96 wt.%were prepared by laser additive manufacturing to examine their formability,microstructure,and mechanical properties.For single-track cladding layers,the addition of Nb increased the surface roughness slightly and decreased the molten pool height to improve its spreadability.The alloy,Ti−5.96Al−1.94V−3.54Nb(wt.%),exhibited better geometrical accuracy than the other alloys because its molten pool height was consistent with the spread layer thickness of the powder.The microstructures of the bulk samples contained similar columnar β-phase grains,regardless of Nb content.These grains grew epitaxially from the Ti substrate along the deposition direction,with basket-weaveα-phase laths within the columnar grains.Theα-phase size increased with increasing Nb contents,but its uniformity decreased.Along the deposition direction,the Vickers hardness increased from the substrate to the surface.The Ti−5.96Al−1.94V−3.54Nb alloy exhibited the highest Vickers hardness regardless of deposition position because of the optimal matching relationship between theα-phase size and its content among the designed alloys. 展开更多
关键词 Ti−Al−V−Nb alloy composition design laser additive manufacturing microstructure mechanical properties
下载PDF
Microstructure and mechanical property of additively manufactured NiTi alloys:A comparison between selective laser melting and directed energy deposition 被引量:12
15
作者 ZHENG Dan LI Rui-di +4 位作者 YUAN Tie-chui XIONG Yi SONG Bo WANG Jia-xing SU Ya-dong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1028-1042,共15页
NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emph... NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emphasis on its phase composition,microstructure,mechanical property and deformation mechanism.The results show that the yield strength and ductility obtained by SLM are 100 MPa and 8%,respectively,which are remarkably different from DED result with 700 MPa and 2%.The load path of SLM sample presents shape memory effect,corresponding to martensite phase detected by XRD;while the load path of DED presents pseudo-elasticity with austenite phase.In SLM sample,fine grain and hole provide a uniform deformation during tensile test,resulting in a better elongation.Furthermore,the nonequilibrium solidification was studied by a temperature field simulation to understand the difference of the two 3D printing methods.Both temperature gradient G and growth rate R determine the microstructure and phase in the SLM sample and DED sample,which leads to similar grain morphologies because of similar G/R.While higher G×R of SLM leads to a finer grain size in SLM sample,providing enough driving force for martensite transition and subsequently changing texture compared to DED sample. 展开更多
关键词 Ni50.8Ti49.2 shape memory alloy additive manufacturing selective laser melting laser directed energy deposition mechanical properties
下载PDF
The design, manufacture and application of multistable mechanical metamaterials-a state-of-the-art review 被引量:3
16
作者 Rui Xu Chuanqing Chen +4 位作者 Jiapeng Sun Yulong He Xin Li Ming-Hui Lu Yanfeng Chen 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期416-452,共37页
Multistable mechanical metamaterials are a type of mechanical metamaterials with special features,such as reusability,energy storage and absorption capabilities,rapid deformation,and amplified output forces.These meta... Multistable mechanical metamaterials are a type of mechanical metamaterials with special features,such as reusability,energy storage and absorption capabilities,rapid deformation,and amplified output forces.These metamaterials are usually realized by series and/or parallel of bistable units.They can exhibit multiple stable configurations under external loads and can be switched reversely among each other,thereby realizing the reusability of mechanical metamaterials and offering broad engineering applications.This paper reviews the latest research progress in the design strategy,manufacture and application of multistable mechanical metamaterials.We divide bistable structures into three categories based on their basic element types and provide the criterion of their bistability.Various manufacturing techniques to fabricate these multistable mechanical metamaterials are introduced,including mold casting,cutting,folding and three-dimensional/4D printing.Furthermore,the prospects of multistable mechanical metamaterials for applications in soft driving,mechanical computing,energy absorption and wave controlling are discussed.Finally,this paper highlights possible challenges and opportunities for future investigations.The review aims to provide insights into the research and development of multistable mechanical metamaterials. 展开更多
关键词 multistable mechanical metamaterials bistable units mechanical properties design and manufacture
下载PDF
Microstructure evolution and mechanical properties of laser additive manufactured Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy 被引量:6
17
作者 Qiang ZHANG Jing CHEN +2 位作者 Hua TAN Xin LIN Wei-dong HUANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第8期2058-2066,共9页
The microstructure, microhardness and tensile properties of laser additive manufactured (LAM) Ti?5Al?2Sn?2Zr?4Mo?4Cr alloy were investigated. The result shows that the microstructure evolution is strongly affected by ... The microstructure, microhardness and tensile properties of laser additive manufactured (LAM) Ti?5Al?2Sn?2Zr?4Mo?4Cr alloy were investigated. The result shows that the microstructure evolution is strongly affected by the thermal history of LAM process. Primary α (αp) with different morphologies, secondary α (αs) and martensite α' can be observed at different positions of the LAMed specimen. Annealing treatment can promote the precipitation of rib-like α phase or acicular α phase. As a result, it can increase or decrease the microhardness. The as-deposited L-direction and T-direction specimens contain the same phase constituent with different morphologies. The tensile properties of the as-deposited LAMed specimens are characterized of anisotropy. The L-direction specimen shows the character of low strength but high ductility when compared with the T-direction specimen. After annealing treatment, the strength of L-direction specimen increases significantly while the ductility reduces. The strength of the annealed T-direction specimen changes little, however, the ductility reduces nearly by 50%. 展开更多
关键词 Ti.5Al.2Sn.2Zr.4Mo.4Cr alloy laser additive manufacture microstructure thermal history mechanical properties
下载PDF
Research on the Mechanical Automation Technology based on Evolutionary Algorithms and Artifi cial Intelligence Theory
18
作者 Mindi Duan 《International Journal of Technology Management》 2016年第7期51-53,共3页
In this paper, we conduct research on the mechanical automation technology based on the evolutionary algorithms and artifi cialintelligence theory. Intelligent control theory after 30 years of development has made gra... In this paper, we conduct research on the mechanical automation technology based on the evolutionary algorithms and artifi cialintelligence theory. Intelligent control theory after 30 years of development has made gratifying achievements. But intelligent control has notyet formed a complete and systematic theory, based on the analysis, design, and there are many important problems in the practical application.Intelligent information processing is the use of some of the experience and knowledge of information, and the combination of that upper andlower knowledge information processing method. It is expected to solve the problem of insufficient information of pathology, computationcomplexity and the problem of real-time requirements, using the mathematical model is diffi cult to describe the nonlinear problem, etc. Underthis basis, this paper proposes the new mechanical automation technology based on the evolutionary algorithms and artifi cial intelligence theoryto propose the new perspective of dealing with the related challenges. 展开更多
关键词 mechanical automation Evolutionary Algorithms Artifi cial Intelligence Theory.
下载PDF
Influence of heat treatments on microstructure and mechanical properties of laser additive manufacturing Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy 被引量:23
19
作者 Yan-yan ZHU Bo CHEN +3 位作者 Hai-bo TANG Xu CHENG Hua-ming WANG Jia LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第1期36-46,共11页
The effect of heat treatments on laser additive manufacturing(LAM)Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy(TC17)was studied aiming to optimize its microstructure and mechanical properties.The as-deposited sample exhibits... The effect of heat treatments on laser additive manufacturing(LAM)Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy(TC17)was studied aiming to optimize its microstructure and mechanical properties.The as-deposited sample exhibits features of a mixed priorβgrain structure consisting of equiaxed and columnar grains,intragranular ultra-fineαlaths and numerous continuous grain boundaryα(αGB).After being pre-annealed inα+βregion(840°C)and standard solution and aging treated,the continuousαGB becomes coarser and the precipitate free zone(PFZ)nearby theαGB transforms into a zone filled with ultra-fine secondaryα(αS)but no primaryα(αP).When pre-annealed in singleβregion(910°C),allαphases transform intoβphase and the alloying elements distribute uniformly near the grain boundary.DiscontinuousαGB and uniform mixture ofαP andαS near grain boundary form after subsequent solution and aging treatment.The two heat treatments can improve the tensile mechanical properties of LAM TC17to satisfy the aviation standard for TC17. 展开更多
关键词 laser additive manufacturing TC17 titanium alloy heat treatment microstructure mechanical properties
下载PDF
Study of the intrinsic mechanisms of nickel additive for grain refinement and strength enhancement of laser aided additively manufactured Ti–6Al–4V 被引量:17
20
作者 Shang Sui Youxiang Chew +3 位作者 Fei Weng Chaolin Tan Zhenglin Du Guijun Bi 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第3期132-148,共17页
It is well-known that grain refiners can tailor the microstructure and enhance the mechanical properties of titanium alloys fabricated by additive manufacturing(AM). However, the intrinsic mechanisms of Ni addition on... It is well-known that grain refiners can tailor the microstructure and enhance the mechanical properties of titanium alloys fabricated by additive manufacturing(AM). However, the intrinsic mechanisms of Ni addition on AM-built Ti–6Al–4V alloy is not well established. This limits its industrial applications. This work systematically investigated the influence of Ni additive on Ti–6Al–4V alloy fabricated by laser aided additive manufacturing(LAAM). The results showed that Ni addition yields three key effects on the microstructural evolution of LAAM-built Ti–6Al–4V alloy.(a) Ni additive remarkably refines the prior-β grains, which is due to the widened solidification range. As the Ni addition increased from 0 to 2.5 wt. %, the major-axis length and aspect ratio of the prior-β grains reduced from over 1500 μm and 7 to 97.7 μm and1.46, respectively.(b) Ni additive can discernibly induce the formation of globular α phase,which is attributed to the enhanced concentration gradient between the β and α phases. This is the driving force of globularization according to the termination mass transfer theory. The aspect ratio of the α laths decreased from 4.14 to 2.79 as the Ni addition increased from 0 to2.5 wt. %.(c) Ni as a well-known β-stabilizer and it can remarkably increase the volume fraction of β phase. Room-temperature tensile results demonstrated an increase in mechanical strength and an almost linearly decreasing elongation with increasing Ni addition. A modified mathematical model was used to quantitatively analyze the strengthening mechanism. It was evident from the results that the α lath phase and the solid solutes contribute the most to the overall yield strength of the LAAM-built Ti–6Al–4V–x Ni alloys in this work. Furthermore, the decrease in elongation with increasing Ni addition is due to the deterioration in deformability of the β phase caused by a large amount of solid-solution Ni atoms. These findings can accelerate the development of additively manufactured titanium alloys. 展开更多
关键词 Ni addition microstructure refinement laser aided additive manufacturing titanium alloys strengthening mechanism
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部