In friction stir welding(FSW), pin profile has more influence on material flow especially in welding of dissimilar materials with different yield strengths. In the dissimilar welding of aluminium and copper, the mater...In friction stir welding(FSW), pin profile has more influence on material flow especially in welding of dissimilar materials with different yield strengths. In the dissimilar welding of aluminium and copper, the material flow behaviour is complex to understand and thus a study is needed to reveal the mechanism of flow behaviour and the resultant mechanical properties. Three pin profiles, whorl pin profile(WPP), plain taper pin profile(PTP) and taper treaded pin profile(TTP) were chosen. The effects of pin profile on the microstructure, microhardness and tensile properties were studied. Optical microscope, scanning electron microscope, X-ray diffraction and EDS analysis were used to characterize the microstructural features. Among the three pin profiles, PTP profile results in defect-free stir zone and maximum joint properties of yield strength of 101 MPa, tensile strength of 116 MPa and joint efficiency of 68% compared with the other pin profiles. However, the microhardness plots are more or less identical for all the pin profiles but follows fluctuating trend. This is attributed to the heterogeneous distribution of hard Cu particle. The superior joint properties are mainly attributed to the defect-free stir zone formation and dispersion strengthening.展开更多
The effect of small tool pin profiles on the microstructures and mechanical properties of 6061 aluminum alloy joints using friction stir welding (FSW) technique was investigated. Three different tool pin profiles: ...The effect of small tool pin profiles on the microstructures and mechanical properties of 6061 aluminum alloy joints using friction stir welding (FSW) technique was investigated. Three different tool pin profiles: threaded tapered cylindrical (T1), triangular (T2) and square (T3) were used to produce the joints. The results indicate that the weld joints are notably affected by joining with different tool pin profiles. The triangular tool pin profile produces thebest metallurgicaland mechanical weld properties compared with other tool pin profiles. Besides, the lowest tensile strength and microhardness are obtained for the joint friction stir welded with square tool pin profile. It is observed that the smaller tool pin profile and shoulder diameter lead to narrow region of heat affected zone (HAZ) and a desired level of softening. The fracture surface examination shows that the joints are also affected when welding with different types of tool pin profiles. The fracture surface shows that the triangular specimen fails with a ductile fracture mode during the tensile test, while the brittle fracture modes are observed in the joints fabricated with other tool pin profiles (T1 and T3).展开更多
To get a full understanding of hot extrusion,solid solution treatment and aging process on the Al−0.56Mg−0.63Si alloy,the microstructure and mechanical properties of a U-shaped profile were studied through optical mic...To get a full understanding of hot extrusion,solid solution treatment and aging process on the Al−0.56Mg−0.63Si alloy,the microstructure and mechanical properties of a U-shaped profile were studied through optical microscopy,scanning electrical microscopy,transmission electrical microscopy,hardness,and tensile tests.The coarse equiaxed grains existed near the profile edge as a result of the dynamic recrystallization nucleation and exceeding growth during hot extrusion.The fibrous deformed and sub-structured grains located between the two coarse grain layers,due to the occurrence of work-hardening and dynamic recovery.Perpendicular needle β′′precipitates were distributed inside the grain,and obvious precipitates-free zone appeared after aging treatment.The tensile strength,yield strength and elongation of the aged Al−Mg−Si alloy U-shaped profile were no less than 279.4 MPa,258.6 MPa,and 21.6%,respectively.The fracture morphology showed dimple rupture characteristics.The precipitates and grain boundaries played key role in the strengthening contribution.展开更多
The study of river dynamics requires knowledge of physical parameters, such as porosity, permeability, and wave propagation velocity, of river-bottom sediments. To do so, sediment properties are determined on mechanic...The study of river dynamics requires knowledge of physical parameters, such as porosity, permeability, and wave propagation velocity, of river-bottom sediments. To do so, sediment properties are determined on mechanically sampled specimens and from subbottom profiling. However, mechanical sampling introduces disturbances that affect test results, with the exception of grain-size distribution. In this study, we perform inversion of acoustic data using the grain-size distribution of mechanically sampled specimens and the relation between porosity and permeability from the Kozeny-Carman equation as prior information. The wave reflection coefficient of the water-silt interface is extracted from the raw subbottom profile. Based on the effective density fluid model, we combine the Kozeny-Carman equation and the wave reflection coefficient. We use experimental data from two Yellow River reservoirs to obtain the wave velocity and density of multiple sections and their spatial variations, and find that the inversion and testing results are in good agreement.展开更多
The comparison results of three beach profile data repeatedly measured before and after the typhoon in Shuidong Bay,west Guangdong province which show that there are significant differences in beach profile erosion an...The comparison results of three beach profile data repeatedly measured before and after the typhoon in Shuidong Bay,west Guangdong province which show that there are significant differences in beach profile erosion and response process.And the changes of beach profile can be divided into:strong downward overall low shoreline regressive type and overall slight erosion shoreline regressive type.Application of the modified mildslope equation along three beach profile are simulated wave high reflection to the sea side,to the section vertical shore pressure gradient and including water roll force and radiation stress,the vertical shore forces one dimensional profile along the momentum conservation equation(radiation stress and water roll force)bottom friction and lateral mixing reaction between numerical solution,the momentum conservation equations of the wave increases the water flow velocity and section along the profile distribution of wave height and related forces.The analysis shows that the extent and difference of coastal erosion depend on the shoreline erosion mode stimulated by the maximum surge water of the coastal current and the maximum velocity of the coastal current and the dynamic state of the profile topography under the action of the profile location,morphology and incident wave elements.展开更多
Aiming at the problems in current cam profile optimization processes, such as simple dynamics models, limited geometric accuracy and low design automatization level, a new dynamic optimization mode is put forward. Bas...Aiming at the problems in current cam profile optimization processes, such as simple dynamics models, limited geometric accuracy and low design automatization level, a new dynamic optimization mode is put forward. Based on the parameterization modeling technique of MSC. ADAMS platform, the different steps in current mode are reorganized, thus obtaining an upgraded mode called the "parameterized-prototype-based cam profile dynamic optimization mode". A parameterized prototype(PP) of valve mechanism is constructed in the course of dynamic optimization for cam profiles. Practically, by utilizing PP and considering the flexibility of the parts in valve mechanism, geometric accuracy and design automatization are improved.展开更多
The effects of single-stage solution treatment(SST),enhanced solution treatment(EST),high-temperature pre-precipitation(HTPP)and multi-stage solution treatment(MST)on the microstructure,mechanical properties and corro...The effects of single-stage solution treatment(SST),enhanced solution treatment(EST),high-temperature pre-precipitation(HTPP)and multi-stage solution treatment(MST)on the microstructure,mechanical properties and corrosion resistance of the as-extruded 7055 aluminium alloy(AA7055)helical profile were investigated using differential scanning calorimetry(DSC),optical microscopy(OM),scanning electron microscopy(SEM),electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM).It was observed that EST and MST could promote the dissolution of the second-phase particles compared with the traditional SST,and the intergranular phases were distinctly discontinuously distributed after HTPP and MST.There was obvious difference in the main texture type and texture strength for the alloy after different solid solution treatments.HTPP could improve the corrosion resistance of the alloy by regulating the intergranular phases,but the mechanical properties were severely weakened.While the good corrosion resistance of the alloy could be obtained by MST without obvious strength loss.As a result,the MST is an ideal solid solution treatment scheme for AA7055.展开更多
Al-Li alloy is a new structural material with the advantages of lightweight and high strength.The extrusion profiles of Al-Li alloy are widely used in aerospace and other fields,which can significantly reduce the weig...Al-Li alloy is a new structural material with the advantages of lightweight and high strength.The extrusion profiles of Al-Li alloy are widely used in aerospace and other fields,which can significantly reduce the weight of the aerospace equipment and improve their carrying capacity and service performance.Particular service conditions of structural components in aeronautical and space areas put forward strict requirements on microstructure,mechanical properties,and dimensional precision of Al-Li alloy profiles.Therefore,it places higher requirements on the shape forming and microstructure controlling of the Al-Li alloy profiles.The manufacturing process of the profiles involves billet homogenization,hot extrusion,solution and quenching treatments,artificial aging,and others.The parameters of each process as well as the die structure have important effects on the final performance of the profiles.This article summarizes the main applications and key mechanical properties of Al-Li alloy extrusion profiles.The technologies related to the manufacturing process of the extrusion profiles are summarized and analyzed.The related studies about the evolutions of the microstructure and mechanical properties during homogenization and extrusion processes are reviewed.The developments of the solid solution and quenching treatments as well as the aging strengthening technology for extruded Al-Li alloy profiles are also introduced.The scientific problems and key technologies that need to be solved in the manufacturing of Al-Li alloy extrusion profiles are presented,and the prospect for future development trends in these fields is given.展开更多
In this investigation,the effect of friction stir welding(FSW)parameters such as tool pin profiles,rotational speed and welding speed on the mechanical properties of tensile strength,hardness and impact energy of magn...In this investigation,the effect of friction stir welding(FSW)parameters such as tool pin profiles,rotational speed and welding speed on the mechanical properties of tensile strength,hardness and impact energy of magnesium alloy AZ31 was studied.The experiments were carried out as per Taguchi parametric design concepts and an L9 orthogonal array was used to study the influence of various combinations of process parameters.Statistical optimization technique,ANOVA,was used to determine the optimum levels and to find the significance of each process parameter.The results indicate that rotational speed(RS)and transverse speed(TS)are the most significant factors,followed by tool pin profile(PF),in deciding the mechanical properties of friction stir welded magnesium alloy.In addition,mathematical models were developed to establish relationship between different process variables and mechanical properties.展开更多
The necessary continuity of the second order derivative or curvature of the cam profile has been analyzed. In order to guarantee the smoothness of the cam radius data, a proper method with which it could be possible t...The necessary continuity of the second order derivative or curvature of the cam profile has been analyzed. In order to guarantee the smoothness of the cam radius data, a proper method with which it could be possible to revise directly the first and the second order difference coefficients as well as the slope has been proposed. This method, applicable to different cam mechanisms by using a unified formula of correction, possesses the characteristics of simplicity, intuition and precision. Meanwhile, a cubic spline function for fitting the cam profile has also been described.展开更多
Nanocrystalline CoZn-ferrite was fabricated by a high-energy milling method by mixing Fe3O4+CoO+ZnO. The structural properties of the milled powder at different milling times were analysed so to ascertain the diffusio...Nanocrystalline CoZn-ferrite was fabricated by a high-energy milling method by mixing Fe3O4+CoO+ZnO. The structural properties of the milled powder at different milling times were analysed so to ascertain the diffusion of CoO and ZnO into the tetrahedral and octahedral sites using mechanical alloying method. The effect of mechanical alloying towards particle size was also investigated. The XRD spectra indicated the precursors reacted during milling with the diffusion of ZnO and followed by CoO into their respective crystallographic sites. SEM micrographs showed the agglomeration of powders due to high energy milling and TEM images confirmed that the particles of the materials were of nanosize dimension. In addition, the results show that the grain possesses a single-phase CoZn-ferrite structure in a typical size of ~16–30 nm. The experiment reveals that nanosize CoZn-ferrite can be obtained after the powder is milled for about 8 hours at room temperature. The mechanism and efficiency of the synthesis of the technique are also discussed in this paper.展开更多
HALT(highly accelerated life test) is a new reliability test technique.This paper uses nonlinear finite element method to analyze the stress strain characteristic of solder joints of PQFP(plastic quad flat packaging) ...HALT(highly accelerated life test) is a new reliability test technique.This paper uses nonlinear finite element method to analyze the stress strain characteristic of solder joints of PQFP(plastic quad flat packaging) and BGA(ball grid array) under thermal cycle test,and studies influences of profile parameters of the thermal cycle,such as hot and cold soak temperature,hot and cold soak time and temperature change rate,on elastic strain range,accumulated plastic strain,fatigue life and test efficiency of two types of solder joints.Based on the above research and experimental verification,this paper presents the method to build an optimal thermal cycling profile for HALT of electronic components.展开更多
A novel and efficient absorption line recovery technique is presented.A micro-electromechanical systems(MEMS) mirror driven by an electrothermal actuator is used to generate laser intensity modulation through the mirr...A novel and efficient absorption line recovery technique is presented.A micro-electromechanical systems(MEMS) mirror driven by an electrothermal actuator is used to generate laser intensity modulation through the mirror reflection.Tunable diode laser spectroscopy(TDLS) and photoacoustic spectroscopy(PAS) are used to recover the target absorption line profile which is compared with the theoretical Voigt profile.The target gas is 0.01% acetylene(C2H2) in a nitrogen host gas.The laser diode wavelength is swept across the P17 absorption line of acetylene at 1 535.4 nm by a current ramp,and an erbium-doped fibre amplifier(EDFA) is used to enhance the optical intensity and increase the signal-to-noise ratio(SNR).A SNR of about 35 is obtained with 100 mW laser power from the EDFA.Good agreement is achieved between the experimental results and the theoretical simulation for the P17 absorption line profile.展开更多
Soil characterization and heavy metals in different layers (0 - 15 cm;15 - 30 cm and 30 - 45 cm depth) of automobile mechanic waste dumps were studied. The soils showed remarkably high levels of all the metals above b...Soil characterization and heavy metals in different layers (0 - 15 cm;15 - 30 cm and 30 - 45 cm depth) of automobile mechanic waste dumps were studied. The soils showed remarkably high levels of all the metals above background concentrations with most (Ni, Cu, Fe, Cr and Cd) decreasing with soil depth. The distribution pattern were in the following order Fe > Cu > Zn > Pb > Cr > Ni > Cd. Across all the sampling locations and profiles, Fe and Cd showed the highest (476.4 μg·g-1) and least (37.5 μg·g-1) mean concentrations respectively. Pollution load index (PLI) and index of geoaccumulation (Igeo) revealed overall high and moderate contamination respectively but the enrichment factors (EFs) for Pb Ni and Cd are severe. The inter-element relationship revealed the identical source of elements in the soils of the studied area. The accuracy of the results has been cheeked using the standard reference material;SRM (PACS-2). The mechanic waste dumps represent potential sources of heavy metal pollution to environment. The elevated levels of heavy metals in these soil profiles constitute a serious threat to both surface and groundwater.展开更多
Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons(VCHs). Conventionally, this technique is used ...Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons(VCHs). Conventionally, this technique is used to treat the mixed soil of a site without considering the diversity and treatability of different soils within the site. A laboratory test was conducted to evaluate the effectiveness of mechanical soil aeration for remediating soils of different textures(silty,clayey, and sandy soils) along a vertical profile at an abandoned chloro-alkali chemical site in China. The collected soils were artificially contaminated with chloroform(TCM) and trichloroethylene(TCE). Mechanical soil aeration was effective for remediating VCHs(removal efficiency 〉 98%). The volatilization process was described by an exponential kinetic function.In the early stage of treatment(0–7 hr), rapid contaminant volatilization followed a pseudofirst order kinetic model. VCH concentrations decreased to low levels and showed a tailing phenomenon with very slow contaminant release after 8 hr. Compared with silty and sandy soils, clayey soil has high organic-matter content, a large specific surface area, a high clay fraction, and a complex pore structure. These characteristics substantially influenced the removal process, making it less efficient, more time consuming, and consequently more expensive. Our findings provide a potential basis for optimizing soil remediation strategy in a cost-effective manner.展开更多
The strength parameters of hydrate-bearing sediments(HBS)are vital to geological risk assessment and control during drilling and production operations.However,current publications mainly focus on the laboratory evalua...The strength parameters of hydrate-bearing sediments(HBS)are vital to geological risk assessment and control during drilling and production operations.However,current publications mainly focus on the laboratory evaluation of strength parameters through triaxial compression,generating results intrinsically deviating from those obtained through petrophysical modeling.In this study,we developed an integrated apparatus that can simultaneously measure wave velocity and the mechanical behaviors of HBS under triaxial compression conditions.A series of experiments were conducted to analyze correlations between wave velocities and strength parameters.Results reveal that the P-and S-wave velocities considerably increase with hydrate saturation and are affected by effective confining pressure.Failure strength and elastic modulus are correlated with P-wave velocity.Finally,semi-empirical models are developed to predict strength parameters based on P-wave velocity and extended to establish longitudinal profiles for strength parameters of hydrate reservoirs in the Nankai Trough.This study offers insights into the acoustic properties of HBS under stress states for the prediction of mechanical parameters during natural gas hydrate development.展开更多
The pilot test of infilling polymer-surfactant-preformed particle gel(PPG)flooding has been successfully implemented after polymer flooding in Ng3 block of Gudao Oilfield in China.However,the production characteristic...The pilot test of infilling polymer-surfactant-preformed particle gel(PPG)flooding has been successfully implemented after polymer flooding in Ng3 block of Gudao Oilfield in China.However,the production characteristics and displacement mechanisms are still unclear,which restricts its further popularization and application.Aiming at this problem,this paper firstly analyzes the production performance of the pilot test and proposed four response types according to the change of water cut curves,including W-type,U-type,V-type response,and no response.Furthermore,the underlying reasons of these four types are analyzed from the aspects of seepage resistance and sweep efficiency.The overall sweep efficiency of gradual-rising W-type,gradual-decreasing W-type,and early V-type response increases from 0.81 to 0.93,0.55 to 0.89,and 0.94 to 1,respectively.And the sum of seepage resistance along the connection line between production well and injection well for U-type and delayed V-type response increases from 0.0994 to 0.2425,and 0.0677 to 0.1654,respectively.Then,the remaining oil distribution after polymer flooding is summarized into four types on the basis of production and geological characteristics,namely disconnected remaining oil,streamline unswept remaining oil,rhythm remaining oil,and interlayer-controlled remaining oil.Furthermore,the main displacement mechanisms for each type are clarified based on the dimensionless seepage resistance and water absorption profile.Generally,improving connectivity by well pattern infilling is the most important for producing disconnected remaining oil.The synergistic effect of well pattern infilling and polymer-surfactant-PPG flooding increases the dimensionless seepage resistance of water channeling regions and forces the subsequent injected water to turn to regions with streamline unswept remaining oil.The improvement of the water absorption profile by polymer-surfactant-PPG flooding and separated layer water injection contributes to displacing rhythm remaining oil and interlayer-controlled remaining oil.Finally,the paper analyzes the relationships between the remaining oil distribution after polymer flooding and production characteristics of infilling polymer-surfactant-PPG flooding.The study helps to deepen the understanding of infilling polymer-surfactant-PPG flooding and has reference significance for more commercial implementations in the future.展开更多
In order to explore the salt tolerance mechanism of Bacillus cereus LBR-4 with salinity of 14%NaCl,differential proteomic analysis of the whole protein of LBR-4 strain expressed under 14%NaCl high salinity condition a...In order to explore the salt tolerance mechanism of Bacillus cereus LBR-4 with salinity of 14%NaCl,differential proteomic analysis of the whole protein of LBR-4 strain expressed under 14%NaCl high salinity condition and normalculture condition(1%NaCl)was studied by two-dimensional electrophoresis and mass spectrometry.The isoelectric point of most detected proteins was between pH 4-7 and the molecular weight distribution was 10-70 ku.Compared with the normal culture condition,the expression level of 118 protein spots in the whole protein expression map changed significantly(accounting for 25.2%of the total protein spots).The expression level of 78 protein spots increased significantly,including 22 new protein spots that appeared under high salt stress.The expression levels of 40 protein spots decreased significantly,including 18 protein spots that disappeared under high salt stress.By mass spectrometry,six distinct differentially expressed protein spotswere dihydroxy acid dehydratase,cell division protein FtsZ,iron sulfur cluster synthesis protein SufD,unknown carboxylase YngE,hypothetical acetaldehyde dehydrogenase DhaS and phenylalanine acid tRNA ligase alpha subunit.It was speculated that under high salt stress,the cells had protective measures and the secretion of intracellular compatible solutes increased.The iron and sulfur clusters involved in various physiological reactions also activated the stressful suf synthesis pathway,and therate of cell division and reproduction was also slowed down and ensured the normal progress of physiological reactions inthe cells.展开更多
In this study, the four kinetic reaction mechanisms were developed to simulate the formation of pollutant species in CNG fired IC engine. The reactions were generated using EXGAS and coupled with Leed’s NOx reactions...In this study, the four kinetic reaction mechanisms were developed to simulate the formation of pollutant species in CNG fired IC engine. The reactions were generated using EXGAS and coupled with Leed’s NOx reactions to develop four kinetic mechanisms. These reaction mechanisms described the combustion of natural gas at low (below 800 K) to high (above 1000 K) temperature in combustion chamber. The simulation studies predicted that the maximum cylinder pressure was achieved up to 18.0 atm & 40.0 atm under fuel leaner conditions (φ ≈0.6) and fuel rich conditions (φ=1.13 to 1.3) respectively. The simulation based data was compared with the experimental data (when engine was operated at 3000 rpm, φ=1.0, Pinlet=0.67 atm). For fuel rich conditions, high concentrations of CO were observed while NOx levels were lowered while the fuel leaner mixture produced the lower CO emissions and moderate levels of NOx emissions. The NOx and CO profiles depicted that Mechanism-I, Mechanism-II and Mechanism III seemed to be inappropriate for predicting the emissions in due to CNG combustion IC engine. The molded data for Mechanism-IV exhibited closer agreement with experimental measurements. The rate of production analysis identified the important reactions in each mechanism which were contributing in the formation of emission concentrations of pollutant species. Although each proposed mechanism illustrated some discrepancies among the profiles, Mechanism-IV (consisting of 208 reactions and 78 species) showed good agreement with experimental data for pressure, temperature and pollutant species profiles.展开更多
A new thread guide mechanism of a rubbed roving frame is developed, which consists mainly of a plate cam, a linkage and an air bag spring. Characteristics and design parameters of the air spring are explored in this s...A new thread guide mechanism of a rubbed roving frame is developed, which consists mainly of a plate cam, a linkage and an air bag spring. Characteristics and design parameters of the air spring are explored in this study. Based on analyses of winding technology for this kind of package, the kinetic laws of the thread guide is put forward. General design equations of the cam profile are derived, and common kinetic laws of II linkage group which is used for such mechanism design is proposed. It proves theoretically that it is practicable. The experimental results indicate that it can meet the needs of technological demands, and the new thread guide mechanism has been used successfully on textile machines.展开更多
文摘In friction stir welding(FSW), pin profile has more influence on material flow especially in welding of dissimilar materials with different yield strengths. In the dissimilar welding of aluminium and copper, the material flow behaviour is complex to understand and thus a study is needed to reveal the mechanism of flow behaviour and the resultant mechanical properties. Three pin profiles, whorl pin profile(WPP), plain taper pin profile(PTP) and taper treaded pin profile(TTP) were chosen. The effects of pin profile on the microstructure, microhardness and tensile properties were studied. Optical microscope, scanning electron microscope, X-ray diffraction and EDS analysis were used to characterize the microstructural features. Among the three pin profiles, PTP profile results in defect-free stir zone and maximum joint properties of yield strength of 101 MPa, tensile strength of 116 MPa and joint efficiency of 68% compared with the other pin profiles. However, the microhardness plots are more or less identical for all the pin profiles but follows fluctuating trend. This is attributed to the heterogeneous distribution of hard Cu particle. The superior joint properties are mainly attributed to the defect-free stir zone formation and dispersion strengthening.
基金supported by the grant No.900100338 of the Universiti Malaysia Perlis (Uni MAP)the outstanding support provided by the staff in the School of Materials Engineering in Uni MAP+1 种基金the Centre for Low Carbon Transport and Institute for Vehicle System Engineering in Universiti Teknologi Malaysia (UTM)the School of Materials Engineering and Mineral Resources in Universiti Sains Malaysia (USM)
文摘The effect of small tool pin profiles on the microstructures and mechanical properties of 6061 aluminum alloy joints using friction stir welding (FSW) technique was investigated. Three different tool pin profiles: threaded tapered cylindrical (T1), triangular (T2) and square (T3) were used to produce the joints. The results indicate that the weld joints are notably affected by joining with different tool pin profiles. The triangular tool pin profile produces thebest metallurgicaland mechanical weld properties compared with other tool pin profiles. Besides, the lowest tensile strength and microhardness are obtained for the joint friction stir welded with square tool pin profile. It is observed that the smaller tool pin profile and shoulder diameter lead to narrow region of heat affected zone (HAZ) and a desired level of softening. The fracture surface examination shows that the joints are also affected when welding with different types of tool pin profiles. The fracture surface shows that the triangular specimen fails with a ductile fracture mode during the tensile test, while the brittle fracture modes are observed in the joints fabricated with other tool pin profiles (T1 and T3).
基金financial support of project on reliability and life research of typical components in rail trains (K10TZ20P0500) of CRRC Zhuzhou Electric Locomotive Research Institute.
文摘To get a full understanding of hot extrusion,solid solution treatment and aging process on the Al−0.56Mg−0.63Si alloy,the microstructure and mechanical properties of a U-shaped profile were studied through optical microscopy,scanning electrical microscopy,transmission electrical microscopy,hardness,and tensile tests.The coarse equiaxed grains existed near the profile edge as a result of the dynamic recrystallization nucleation and exceeding growth during hot extrusion.The fibrous deformed and sub-structured grains located between the two coarse grain layers,due to the occurrence of work-hardening and dynamic recovery.Perpendicular needle β′′precipitates were distributed inside the grain,and obvious precipitates-free zone appeared after aging treatment.The tensile strength,yield strength and elongation of the aged Al−Mg−Si alloy U-shaped profile were no less than 279.4 MPa,258.6 MPa,and 21.6%,respectively.The fracture morphology showed dimple rupture characteristics.The precipitates and grain boundaries played key role in the strengthening contribution.
基金supported by the Ministry of Water Resources Special Funds for Scientific Research on Public Causes(No.201301024)the Special Funds for Yellow River Institute of Hydraulic Research(No.HKY-JBYW-2016-09 and No.HKYJBYW-2016-29)
文摘The study of river dynamics requires knowledge of physical parameters, such as porosity, permeability, and wave propagation velocity, of river-bottom sediments. To do so, sediment properties are determined on mechanically sampled specimens and from subbottom profiling. However, mechanical sampling introduces disturbances that affect test results, with the exception of grain-size distribution. In this study, we perform inversion of acoustic data using the grain-size distribution of mechanically sampled specimens and the relation between porosity and permeability from the Kozeny-Carman equation as prior information. The wave reflection coefficient of the water-silt interface is extracted from the raw subbottom profile. Based on the effective density fluid model, we combine the Kozeny-Carman equation and the wave reflection coefficient. We use experimental data from two Yellow River reservoirs to obtain the wave velocity and density of multiple sections and their spatial variations, and find that the inversion and testing results are in good agreement.
基金Project funded by the National Nature Fund(41371498,42071007)。
文摘The comparison results of three beach profile data repeatedly measured before and after the typhoon in Shuidong Bay,west Guangdong province which show that there are significant differences in beach profile erosion and response process.And the changes of beach profile can be divided into:strong downward overall low shoreline regressive type and overall slight erosion shoreline regressive type.Application of the modified mildslope equation along three beach profile are simulated wave high reflection to the sea side,to the section vertical shore pressure gradient and including water roll force and radiation stress,the vertical shore forces one dimensional profile along the momentum conservation equation(radiation stress and water roll force)bottom friction and lateral mixing reaction between numerical solution,the momentum conservation equations of the wave increases the water flow velocity and section along the profile distribution of wave height and related forces.The analysis shows that the extent and difference of coastal erosion depend on the shoreline erosion mode stimulated by the maximum surge water of the coastal current and the maximum velocity of the coastal current and the dynamic state of the profile topography under the action of the profile location,morphology and incident wave elements.
文摘Aiming at the problems in current cam profile optimization processes, such as simple dynamics models, limited geometric accuracy and low design automatization level, a new dynamic optimization mode is put forward. Based on the parameterization modeling technique of MSC. ADAMS platform, the different steps in current mode are reorganized, thus obtaining an upgraded mode called the "parameterized-prototype-based cam profile dynamic optimization mode". A parameterized prototype(PP) of valve mechanism is constructed in the course of dynamic optimization for cam profiles. Practically, by utilizing PP and considering the flexibility of the parts in valve mechanism, geometric accuracy and design automatization are improved.
基金the financial supports from the National Natural Science Foundation of China(No.51975330)Science Fund for Distinguished Young Scholars of Shandong Province,China(No.JQ201810)the Key Research and Development Program of Shandong Province,China(No.2019JZZY010360).
文摘The effects of single-stage solution treatment(SST),enhanced solution treatment(EST),high-temperature pre-precipitation(HTPP)and multi-stage solution treatment(MST)on the microstructure,mechanical properties and corrosion resistance of the as-extruded 7055 aluminium alloy(AA7055)helical profile were investigated using differential scanning calorimetry(DSC),optical microscopy(OM),scanning electron microscopy(SEM),electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM).It was observed that EST and MST could promote the dissolution of the second-phase particles compared with the traditional SST,and the intergranular phases were distinctly discontinuously distributed after HTPP and MST.There was obvious difference in the main texture type and texture strength for the alloy after different solid solution treatments.HTPP could improve the corrosion resistance of the alloy by regulating the intergranular phases,but the mechanical properties were severely weakened.While the good corrosion resistance of the alloy could be obtained by MST without obvious strength loss.As a result,the MST is an ideal solid solution treatment scheme for AA7055.
基金National Science Foundation of China(Grant No.51735008)Shandong Province Major scientific and Technological Innovation Project of China(Grant No.2019TSLH0102).
文摘Al-Li alloy is a new structural material with the advantages of lightweight and high strength.The extrusion profiles of Al-Li alloy are widely used in aerospace and other fields,which can significantly reduce the weight of the aerospace equipment and improve their carrying capacity and service performance.Particular service conditions of structural components in aeronautical and space areas put forward strict requirements on microstructure,mechanical properties,and dimensional precision of Al-Li alloy profiles.Therefore,it places higher requirements on the shape forming and microstructure controlling of the Al-Li alloy profiles.The manufacturing process of the profiles involves billet homogenization,hot extrusion,solution and quenching treatments,artificial aging,and others.The parameters of each process as well as the die structure have important effects on the final performance of the profiles.This article summarizes the main applications and key mechanical properties of Al-Li alloy extrusion profiles.The technologies related to the manufacturing process of the extrusion profiles are summarized and analyzed.The related studies about the evolutions of the microstructure and mechanical properties during homogenization and extrusion processes are reviewed.The developments of the solid solution and quenching treatments as well as the aging strengthening technology for extruded Al-Li alloy profiles are also introduced.The scientific problems and key technologies that need to be solved in the manufacturing of Al-Li alloy extrusion profiles are presented,and the prospect for future development trends in these fields is given.
文摘In this investigation,the effect of friction stir welding(FSW)parameters such as tool pin profiles,rotational speed and welding speed on the mechanical properties of tensile strength,hardness and impact energy of magnesium alloy AZ31 was studied.The experiments were carried out as per Taguchi parametric design concepts and an L9 orthogonal array was used to study the influence of various combinations of process parameters.Statistical optimization technique,ANOVA,was used to determine the optimum levels and to find the significance of each process parameter.The results indicate that rotational speed(RS)and transverse speed(TS)are the most significant factors,followed by tool pin profile(PF),in deciding the mechanical properties of friction stir welded magnesium alloy.In addition,mathematical models were developed to establish relationship between different process variables and mechanical properties.
文摘The necessary continuity of the second order derivative or curvature of the cam profile has been analyzed. In order to guarantee the smoothness of the cam radius data, a proper method with which it could be possible to revise directly the first and the second order difference coefficients as well as the slope has been proposed. This method, applicable to different cam mechanisms by using a unified formula of correction, possesses the characteristics of simplicity, intuition and precision. Meanwhile, a cubic spline function for fitting the cam profile has also been described.
文摘Nanocrystalline CoZn-ferrite was fabricated by a high-energy milling method by mixing Fe3O4+CoO+ZnO. The structural properties of the milled powder at different milling times were analysed so to ascertain the diffusion of CoO and ZnO into the tetrahedral and octahedral sites using mechanical alloying method. The effect of mechanical alloying towards particle size was also investigated. The XRD spectra indicated the precursors reacted during milling with the diffusion of ZnO and followed by CoO into their respective crystallographic sites. SEM micrographs showed the agglomeration of powders due to high energy milling and TEM images confirmed that the particles of the materials were of nanosize dimension. In addition, the results show that the grain possesses a single-phase CoZn-ferrite structure in a typical size of ~16–30 nm. The experiment reveals that nanosize CoZn-ferrite can be obtained after the powder is milled for about 8 hours at room temperature. The mechanism and efficiency of the synthesis of the technique are also discussed in this paper.
基金Sponsored by National Advanced Research Project of China (41319030101)
文摘HALT(highly accelerated life test) is a new reliability test technique.This paper uses nonlinear finite element method to analyze the stress strain characteristic of solder joints of PQFP(plastic quad flat packaging) and BGA(ball grid array) under thermal cycle test,and studies influences of profile parameters of the thermal cycle,such as hot and cold soak temperature,hot and cold soak time and temperature change rate,on elastic strain range,accumulated plastic strain,fatigue life and test efficiency of two types of solder joints.Based on the above research and experimental verification,this paper presents the method to build an optimal thermal cycling profile for HALT of electronic components.
基金Financial support from National High Technology Research and Development Programof China(Grant No.:2007A A06Z1122007AA03Z446)
文摘A novel and efficient absorption line recovery technique is presented.A micro-electromechanical systems(MEMS) mirror driven by an electrothermal actuator is used to generate laser intensity modulation through the mirror reflection.Tunable diode laser spectroscopy(TDLS) and photoacoustic spectroscopy(PAS) are used to recover the target absorption line profile which is compared with the theoretical Voigt profile.The target gas is 0.01% acetylene(C2H2) in a nitrogen host gas.The laser diode wavelength is swept across the P17 absorption line of acetylene at 1 535.4 nm by a current ramp,and an erbium-doped fibre amplifier(EDFA) is used to enhance the optical intensity and increase the signal-to-noise ratio(SNR).A SNR of about 35 is obtained with 100 mW laser power from the EDFA.Good agreement is achieved between the experimental results and the theoretical simulation for the P17 absorption line profile.
文摘Soil characterization and heavy metals in different layers (0 - 15 cm;15 - 30 cm and 30 - 45 cm depth) of automobile mechanic waste dumps were studied. The soils showed remarkably high levels of all the metals above background concentrations with most (Ni, Cu, Fe, Cr and Cd) decreasing with soil depth. The distribution pattern were in the following order Fe > Cu > Zn > Pb > Cr > Ni > Cd. Across all the sampling locations and profiles, Fe and Cd showed the highest (476.4 μg·g-1) and least (37.5 μg·g-1) mean concentrations respectively. Pollution load index (PLI) and index of geoaccumulation (Igeo) revealed overall high and moderate contamination respectively but the enrichment factors (EFs) for Pb Ni and Cd are severe. The inter-element relationship revealed the identical source of elements in the soils of the studied area. The accuracy of the results has been cheeked using the standard reference material;SRM (PACS-2). The mechanic waste dumps represent potential sources of heavy metal pollution to environment. The elevated levels of heavy metals in these soil profiles constitute a serious threat to both surface and groundwater.
基金supported by the National Environmental Protection Public Welfare projects(Nos.201409047 and 201109017)the “13th Five-Year Plan” National Key Research and Development Program of China(No.2016YFC0501108)+1 种基金the Fundamental Research Funds for the Central Universities(No.2016QH02)Beijing Natural Science Foundation(No.8152025)
文摘Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons(VCHs). Conventionally, this technique is used to treat the mixed soil of a site without considering the diversity and treatability of different soils within the site. A laboratory test was conducted to evaluate the effectiveness of mechanical soil aeration for remediating soils of different textures(silty,clayey, and sandy soils) along a vertical profile at an abandoned chloro-alkali chemical site in China. The collected soils were artificially contaminated with chloroform(TCM) and trichloroethylene(TCE). Mechanical soil aeration was effective for remediating VCHs(removal efficiency 〉 98%). The volatilization process was described by an exponential kinetic function.In the early stage of treatment(0–7 hr), rapid contaminant volatilization followed a pseudofirst order kinetic model. VCH concentrations decreased to low levels and showed a tailing phenomenon with very slow contaminant release after 8 hr. Compared with silty and sandy soils, clayey soil has high organic-matter content, a large specific surface area, a high clay fraction, and a complex pore structure. These characteristics substantially influenced the removal process, making it less efficient, more time consuming, and consequently more expensive. Our findings provide a potential basis for optimizing soil remediation strategy in a cost-effective manner.
基金supported by the Qingdao Natural Science Foundation(No.23-2-1-54-zyyd-jch)the National Natural Science Foundation of China(Nos.42206233 and 42206231)+2 种基金the National Key Research and Development Pro-gram of China(No.2022YFC2806405)the Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education,Tongji University(No.KLE-TJGE-G2202)the Laoshan Laboratory(No.LSKJ202203506)。
文摘The strength parameters of hydrate-bearing sediments(HBS)are vital to geological risk assessment and control during drilling and production operations.However,current publications mainly focus on the laboratory evaluation of strength parameters through triaxial compression,generating results intrinsically deviating from those obtained through petrophysical modeling.In this study,we developed an integrated apparatus that can simultaneously measure wave velocity and the mechanical behaviors of HBS under triaxial compression conditions.A series of experiments were conducted to analyze correlations between wave velocities and strength parameters.Results reveal that the P-and S-wave velocities considerably increase with hydrate saturation and are affected by effective confining pressure.Failure strength and elastic modulus are correlated with P-wave velocity.Finally,semi-empirical models are developed to predict strength parameters based on P-wave velocity and extended to establish longitudinal profiles for strength parameters of hydrate reservoirs in the Nankai Trough.This study offers insights into the acoustic properties of HBS under stress states for the prediction of mechanical parameters during natural gas hydrate development.
基金The authors greatly appreciate the financial support of the National Natural Science Foundation of China(Grant No.52104027)the Project supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U21B2070)the Shandong Provincial Natural Science Foundation(Grant No.ZR2021ME072).
文摘The pilot test of infilling polymer-surfactant-preformed particle gel(PPG)flooding has been successfully implemented after polymer flooding in Ng3 block of Gudao Oilfield in China.However,the production characteristics and displacement mechanisms are still unclear,which restricts its further popularization and application.Aiming at this problem,this paper firstly analyzes the production performance of the pilot test and proposed four response types according to the change of water cut curves,including W-type,U-type,V-type response,and no response.Furthermore,the underlying reasons of these four types are analyzed from the aspects of seepage resistance and sweep efficiency.The overall sweep efficiency of gradual-rising W-type,gradual-decreasing W-type,and early V-type response increases from 0.81 to 0.93,0.55 to 0.89,and 0.94 to 1,respectively.And the sum of seepage resistance along the connection line between production well and injection well for U-type and delayed V-type response increases from 0.0994 to 0.2425,and 0.0677 to 0.1654,respectively.Then,the remaining oil distribution after polymer flooding is summarized into four types on the basis of production and geological characteristics,namely disconnected remaining oil,streamline unswept remaining oil,rhythm remaining oil,and interlayer-controlled remaining oil.Furthermore,the main displacement mechanisms for each type are clarified based on the dimensionless seepage resistance and water absorption profile.Generally,improving connectivity by well pattern infilling is the most important for producing disconnected remaining oil.The synergistic effect of well pattern infilling and polymer-surfactant-PPG flooding increases the dimensionless seepage resistance of water channeling regions and forces the subsequent injected water to turn to regions with streamline unswept remaining oil.The improvement of the water absorption profile by polymer-surfactant-PPG flooding and separated layer water injection contributes to displacing rhythm remaining oil and interlayer-controlled remaining oil.Finally,the paper analyzes the relationships between the remaining oil distribution after polymer flooding and production characteristics of infilling polymer-surfactant-PPG flooding.The study helps to deepen the understanding of infilling polymer-surfactant-PPG flooding and has reference significance for more commercial implementations in the future.
基金Supported by Heilongjiang Province National Science Foundation(LH2020C007)。
文摘In order to explore the salt tolerance mechanism of Bacillus cereus LBR-4 with salinity of 14%NaCl,differential proteomic analysis of the whole protein of LBR-4 strain expressed under 14%NaCl high salinity condition and normalculture condition(1%NaCl)was studied by two-dimensional electrophoresis and mass spectrometry.The isoelectric point of most detected proteins was between pH 4-7 and the molecular weight distribution was 10-70 ku.Compared with the normal culture condition,the expression level of 118 protein spots in the whole protein expression map changed significantly(accounting for 25.2%of the total protein spots).The expression level of 78 protein spots increased significantly,including 22 new protein spots that appeared under high salt stress.The expression levels of 40 protein spots decreased significantly,including 18 protein spots that disappeared under high salt stress.By mass spectrometry,six distinct differentially expressed protein spotswere dihydroxy acid dehydratase,cell division protein FtsZ,iron sulfur cluster synthesis protein SufD,unknown carboxylase YngE,hypothetical acetaldehyde dehydrogenase DhaS and phenylalanine acid tRNA ligase alpha subunit.It was speculated that under high salt stress,the cells had protective measures and the secretion of intracellular compatible solutes increased.The iron and sulfur clusters involved in various physiological reactions also activated the stressful suf synthesis pathway,and therate of cell division and reproduction was also slowed down and ensured the normal progress of physiological reactions inthe cells.
文摘In this study, the four kinetic reaction mechanisms were developed to simulate the formation of pollutant species in CNG fired IC engine. The reactions were generated using EXGAS and coupled with Leed’s NOx reactions to develop four kinetic mechanisms. These reaction mechanisms described the combustion of natural gas at low (below 800 K) to high (above 1000 K) temperature in combustion chamber. The simulation studies predicted that the maximum cylinder pressure was achieved up to 18.0 atm & 40.0 atm under fuel leaner conditions (φ ≈0.6) and fuel rich conditions (φ=1.13 to 1.3) respectively. The simulation based data was compared with the experimental data (when engine was operated at 3000 rpm, φ=1.0, Pinlet=0.67 atm). For fuel rich conditions, high concentrations of CO were observed while NOx levels were lowered while the fuel leaner mixture produced the lower CO emissions and moderate levels of NOx emissions. The NOx and CO profiles depicted that Mechanism-I, Mechanism-II and Mechanism III seemed to be inappropriate for predicting the emissions in due to CNG combustion IC engine. The molded data for Mechanism-IV exhibited closer agreement with experimental measurements. The rate of production analysis identified the important reactions in each mechanism which were contributing in the formation of emission concentrations of pollutant species. Although each proposed mechanism illustrated some discrepancies among the profiles, Mechanism-IV (consisting of 208 reactions and 78 species) showed good agreement with experimental data for pressure, temperature and pollutant species profiles.
文摘A new thread guide mechanism of a rubbed roving frame is developed, which consists mainly of a plate cam, a linkage and an air bag spring. Characteristics and design parameters of the air spring are explored in this study. Based on analyses of winding technology for this kind of package, the kinetic laws of the thread guide is put forward. General design equations of the cam profile are derived, and common kinetic laws of II linkage group which is used for such mechanism design is proposed. It proves theoretically that it is practicable. The experimental results indicate that it can meet the needs of technological demands, and the new thread guide mechanism has been used successfully on textile machines.