期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Mechanical properties of lattice grid composites 被引量:2
1
作者 Hualin Fan Daining Fang Fengnian Jin 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第4期409-418,共10页
An equivalent continuum method only considering the stretching deformation of struts was used to study the in-plane stiffness and strength of planar lattice grid com- posite materials. The initial yield equations of l... An equivalent continuum method only considering the stretching deformation of struts was used to study the in-plane stiffness and strength of planar lattice grid com- posite materials. The initial yield equations of lattices were deduced. Initial yield surfaces were depicted separately in different 3D and 2D stress spaces. The failure envelope is a polyhedron in 3D spaces and a polygon in 2D spaces. Each plane or line of the failure envelope is corresponding to the yield or buckling of a typical bar row. For lattices with more than three bar rows, subsequent yield of the other bar row after initial yield made the lattice achieve greater limit strength. The importance of the buckling strength of the grids was strengthened while the grids were relative sparse. The integration model of the method was used to study the nonlinear mechanical properties of strain hardening grids. It was shown that the integration equation could accurately model the complete stress-strain curves of the grids within small deformations. 展开更多
关键词 Lattice grid composites· mechanical properties·Buckling ·Plastic deformation·Analytical modeling
下载PDF
Microstructures and mechanical properties of ferrite-based lightweight steel with different compositions 被引量:4
2
作者 Reng-chong Xu Yan-lin He +4 位作者 Hu Jiang Hua Wang Na-qiong Zhu Xiao-gang Lu Lin Li 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第7期737-742,共6页
The microstructures and mechanical properties of ferrite-based lightweight steel with different compositions were investigated by tensile test,scanning electron microscopy(SEM),transmission electron microscopy(TEM... The microstructures and mechanical properties of ferrite-based lightweight steel with different compositions were investigated by tensile test,scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD)and thermodynamic calculation(TC).It was shown that the ferrite-based lightweight steels with 5wt.%or 8wt.%Al were basically composed of ferrite,austenite andκ-carbide.As the annealing temperature increased,the content of the austenite in the steel gradually increased,while theκ-carbide gradually decomposed and finally disappeared.The mechanical properties of the steel with 5wt.%Al and 2wt.%Cr,composed of ferrite and Cr7C3carbide at different annealing temperatures,were significantly inferior to those of others.The steel containing 5wt.%Al,annealed at 820°C for 50sthen rapidly cooled to 400°C and held for 180s,can obtain the best product of strength and elongation(PSE)of 31242MPa·%.The austenite stability of the steel is better,and its PSE is higher.In addition,the steel with higher PSE has a more stable instantaneous strain hardening exponent(n value),which is mainly caused by the effect of transformation induced plasticity(TRIP).When theκ-carbide or Cr7C3carbide existed in the microstructure of the steel,there was an obvious yield plateau in the tensile curve,while its PSE decreased significantly. 展开更多
关键词 Ferrite-based lightweight steel Microstructure mechanical property Transformation induced plasticity effect κ-carbide
原文传递
Thermal stability of retained austenite and mechanical properties of medium-Mn steel during tempering treatment 被引量:4
3
作者 Xiao-li Zhao Yong-jian Zhang +2 位作者 Cheng-wei Shao Wei-jun Hui Han Dong 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第8期830-837,共8页
The thermal stability of retained austenite(RA)and the mechanical properties of the quenched and intercritical annealed 0.1C-5Mn steel with the starting ultrafine lamellar duplex structure of ferrite and retained au... The thermal stability of retained austenite(RA)and the mechanical properties of the quenched and intercritical annealed 0.1C-5Mn steel with the starting ultrafine lamellar duplex structure of ferrite and retained austenite during tempering within the range from 200 to 500°C were studied by X-ray diffraction(XRD),transmission electron microscopy(TEM)and tensile testing.The results showed that there was a slight decrease in the RA volume fraction with increasing tempering temperature up to 400°C.This caused a slight increase in the ultimate tensile strength(UTS)and a slight decrease in the total elongation(TE);thus,the product of UTS to TE(UTS×TE)as high as 31GPa·% was obtained and remained nearly unchanged.However,aportion of the RA began to decompose when tempered at 500°C and thus caused a^35% decrease of the RA fraction and a^16%decrease of the value of UTS×TE.It is concluded that the ultrafine lamellar duplex structure is rather stable and the excellent combination of strength and ductility could be retained with tempering temperature up to 400°C.Thus,thermal processes such as galvanization are feasible for the tested steel provided that their temperatures are not higher than 400°C. 展开更多
关键词 Medium-manganese transformation-induced plasticity steel Tempering Microstructure mechanical property Retained austenite
原文传递
Mechanical Properties and Microstructure Evolution of AA1100 Aluminum Sheet Processed by Accumulative Press Bonding Process
4
作者 Amir Mostafapor Vahid Mohammadinia 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第8期735-741,共7页
Accumulative press bonding(APB) is a novel variant of severe plastic deformation processes,which is devised to produce materials with ultra-fine grain.In the present work,the mechanical properties and microstructura... Accumulative press bonding(APB) is a novel variant of severe plastic deformation processes,which is devised to produce materials with ultra-fine grain.In the present work,the mechanical properties and microstructural evolution of AA1100 alloy,which is produced by APB technique,were investigated.The study of the microstructure of AA1100 alloy was performed by optical microscopy.The results revealed that the grain size of the samples decreased to 950 nm after six passes of APB process.The yield strength of AA1100 alloy after six passes of the process increased up to 264 MPa,which is three times higher than that of the as-cast material(89 MPa).After six passes,microhardness values of AA1100 alloy increased from 38 to 61 HV.Furthermore,the results showed that the behavior of variations in mechanical properties is in accordance with the microstructural changes and it can be justified by using the Hall-Patch equation.Moreover,the rise in the yield strength can be attributed to the reduction in the grain size leading to the strain hardening. 展开更多
关键词 Severe plastic deformation Accumulative press bonding mechanical properties Metallurgical properties AA1100 alloy
原文传递
Recent progress in medium-Mn steels made with new designing strategies, a review 被引量:32
5
作者 Bin Hu Haiwen Luo +1 位作者 Feng Yang Han Dong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第12期1457-1464,共8页
After summarizing the relevant researches on the medium Mn steels in references, two new targets on the tensile properties have been defined. One is that both transformation-induced(TRIP) and twinninginduced plastic... After summarizing the relevant researches on the medium Mn steels in references, two new targets on the tensile properties have been defined. One is that both transformation-induced(TRIP) and twinninginduced plasticity(TWIP) could be realized for the steel with a relatively low Mn content, which exhibits the similar tensile properties to the classical TWIP steels with higher Mn content. The other is to achieve ultrahigh ultimate tensile strength(〉1.5 GPa) without sacrificing formability. To achieve these goals,new designing strategies was put forward for compositions and the processing route. In particular, warm rolling was employed instead of the usual hot/cold rolling process because the former can produce a mixture of retained austenite grains with different morphologies and sizes via the partial recrystallization. Consequently, the retained austenite grains have a wide range of mechanic stability so that they can transform to martensite gradually during deformation, leading to enhanced TRIP effect and then improved mechanic properties. Finally, it is succeeded in manufacturing these targeted medium Mn steels in laboratory, some of them even exhibit better tensile properties than our expectation. 展开更多
关键词 Medium Mn steel Retained austenite Transformation-induced plasticity Twinning-induced plasticity mechanical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部