期刊文献+
共找到1,521篇文章
< 1 2 77 >
每页显示 20 50 100
Effect of Water Absorption on the Mechanical Property and Failure Mechanism of Hollow Glass Microspheres Composite Epoxy Resin Solid Buoyancy Materials
1
作者 DING Yue ZHAI Gang-jun +2 位作者 MA Zhe WEI Zi-hao LI Xin 《China Ocean Engineering》 SCIE EI CSCD 2023年第5期876-884,共9页
To study the water absorption of hollow glass microspheres(HGMs)composite epoxy resin solid buoyancy materials in the marine environment and its effect on the mechanical properties,the water absorption was measured by... To study the water absorption of hollow glass microspheres(HGMs)composite epoxy resin solid buoyancy materials in the marine environment and its effect on the mechanical properties,the water absorption was measured by immersing the material in distilled water for 36 days at ambient temperature and fitted to Fick’s second law.The strength of materials before and after water absorption were tested by uniaxial experiments,and the effects of the filling ratio and water absorption on the mechanical properties of the materials were analyzed and explained.Finally,the failure modes and mechanism of the hollow glass microspheres composite material were explicated from the microscopic level by scanning electron microscope(SEM).This research will help solve the problems of solid buoyancy materials in ocean engineering applications. 展开更多
关键词 solid buoyancy material water absorption mechanical property failure mechanism scanning electron microscope
下载PDF
Effects of water intrusion and loading rate on mechanical properties of and crack propagation in coal–rock combinations 被引量:10
2
作者 陈田 姚强岭 +4 位作者 卫斐 种照辉 周健 王常彬 李静 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第2期423-431,共9页
Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock... Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock combinations. Fifty-four coal–rock combinations were prepared and split equally into groups containing different moisture contents(dry, natural moisture and saturated) to conduct acoustic emission testing under uniaxial compression with loading rates ranging from 0.1 mm/min to 0.6 mm/min. The results show that the peak stress and strength-softening modulus, elastic modulus, strain-softening modulus, and post-peak modulus partly decrease with increasing moisture content and loading rate. In contrast, peak strain increases with increasing moisture content and fluctuates with rising loading rate. More significantly, the relationship between stiffness and stress, combined with accumulated counts of acoustic emission, can be used to precisely predict all phases of crack propagation. This is helpful in studying the impact of moisture content and loading rate on crack propagation and accurately calculating mechanical properties. We also determined that the stress thresholds of crack closure, crack initiation, and crack damage do not vary with changes of moisture content and loading rate, constituting 15.22%, 32.20%, and 80.98% of peak stress, respectively. These outcomes assist in developing approaches to water storage in coal mines, determining the necessary width of waterproof coal–rock pillars, and methods of supporting water-enriched roadways, while also advances understanding the mechanical properties of coal–rock combinations and laws of crack propagation. 展开更多
关键词 water intrusion loading rate mechanical properties coal-rock combination crack propagation stress threshold
下载PDF
Macroscopic and microscopic mechanical behavior and seepage characteristics of coal under hydro-mechanical coupling
3
作者 GAO Ming-zhong GAO Zheng +6 位作者 YANG Ben-gao XIE Jing WANG Ming-yao HAO Hai-chun WU Yan ZHOU Lang WANG Jing-yu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2765-2779,共15页
Understanding the physical,mechanical behavior,and seepage characteristics of coal under hydro-mechanical coupling holds significant importance for ensuring the stability of surrounding rock formations and preventing ... Understanding the physical,mechanical behavior,and seepage characteristics of coal under hydro-mechanical coupling holds significant importance for ensuring the stability of surrounding rock formations and preventing gas outbursts.Scanning electron microscopy,uniaxial tests,and triaxial tests were conducted to comprehensively analyze the macroscopic and microscopic physical and mechanical characteristics of coal under different soaking times.Moreover,by restoring the stress path and water injection conditions of the protective layer indoors,we explored the coal mining dynamic behavior and the evolution of permeability.The results show that water causes the micro-surface of coal to peel off and cracks to expand and develop.With the increase of soaking time,the uniaxial and triaxial strengths were gradually decreased with nonlinear trend,and decreased by 63.31%and 30.95%after soaking for 240 h,respectively.Under different water injection pressure conditions,coal permeability undergoes three stages during the mining loading process and ultimately increases to higher values.The peak stress of coal,the deviatoric stress and strain at the permeability surge point all decrease with increasing water injection pressure.The results of this research can help improve the understanding of the coal mechanical properties and seepage evolution law under hydro-mechanical coupling. 展开更多
关键词 COAL water intrusion mechanical properties PERMEABILITY macro and micro features
下载PDF
Influence of Water Ageing on Mechanical Properties of CaCO<sub>3</sub>Filler Filled Epoxy Resin and <em>Sansevieria</em>/Carbon Fiber Reinforced Composites 被引量:1
4
作者 Naveed Anjum Bheemappa Suresha Somanahally Lingaiah Ajit Prasad 《Open Journal of Composite Materials》 2019年第1期1-20,共20页
The present paper studies water absorption behavior and its consequence on mechanical properties of untreated and chemically treated Sansevieria /carbon fiber reinforced hybrid epoxy (Sria/CF-Ep) composite with calciu... The present paper studies water absorption behavior and its consequence on mechanical properties of untreated and chemically treated Sansevieria /carbon fiber reinforced hybrid epoxy (Sria/CF-Ep) composite with calcium carbonate (CaCO3) nanoparticles. Sansevieria /carbon fiber (30/5 wt%) reinforced hybrid epoxy composite with 1.5, 3 and 4.5 wt% of CaCO3 have been developed by hand lay-up method followed by heat press. The water absorption characteristics of the Sria fibers were obtained by immersing the composite samples in sea water at room temperature, until reaching their water content saturation level. The dry and water-immersed hybrid composite samples were subjected to hardness, interlaminar shear, tensile, flexural, and impact tests. The water absorption development of hybrid composites was found to follow Fickian diffusion behavior. Diffusion coefficients and maximum water uptake results were evaluated;the outcome showed that both increased with an increase in filler loading to study the consequence of water penetration in the fiber/matrix interface. The study shows that the mechanical and water-resistant properties of the Sria were improved through chemical treatment and hybridization. Nevertheless, as a result of water penetrating the fiber/matrix interface, longer water-immersion times reduced the tensile and flexural strength of the composites. 展开更多
关键词 Epoxy Sria Nano CACO3 Sea water mechanical Properties
下载PDF
Mechanical Properties of Glass Fiber/Unsaturated Polyester Resin Composite Water Collector
5
作者 XIONG Yanping QIU Li +1 位作者 NAN Yanmin LONG Tianyu 《Journal of Donghua University(English Edition)》 CAS 2021年第1期68-71,共4页
The water collector is operated in the humid and hot environment of the cooling tower all the year round.It also needs to carry part of the weight of water and silt.Therefore,it is particularly critical to optimize th... The water collector is operated in the humid and hot environment of the cooling tower all the year round.It also needs to carry part of the weight of water and silt.Therefore,it is particularly critical to optimize the material of the water collector and improve its mechanical properties.Polyester,a general term of polymer obtained from polyols and polyacids,is a kind of engineering plastics with excellent properties and wide applications.Glass fiber is a reinforced plastic reinforcement material,and the biggest characteristic of it is the high tensile strength and good heat resistance.In this paper,glass fiber reinforced polyester resin composite material is prepared,its tensile properties and bending properties are tested,and the performance of the imported material JK2020B is compared and analyzed.The results show that the elastic modulus along the fiber direction is relatively high,but the interlayer force in the direction of thickness and width is very small.This review provides a guidance for production process. 展开更多
关键词 glass fiber unsaturated polyester resin composite material water collector mechanical property
下载PDF
The Effect of Plasticizers on Mechanical Properties and Water Vapor Permeability of Gelatin-Based Edible Films Containing Clay Nanoparticles
6
作者 Mahsa Rezaei Ali Motamedzadegan 《World Journal of Nano Science and Engineering》 2015年第4期178-193,共16页
The effects of glycerol and sorbitol as two plasticizers on mechanical properties, water vapor permeability, thermal properties, color and capability of heat sealing of gelatin films (of phytophagous fish, bovine gela... The effects of glycerol and sorbitol as two plasticizers on mechanical properties, water vapor permeability, thermal properties, color and capability of heat sealing of gelatin films (of phytophagous fish, bovine gelatin with high gel-forming ability, and bovine gelatin with low gel-forming ability) containing clay nanoparticles were studied in this research. For this purpose, 6 × 2 × 3 factorial experiments using the completely randomized design and comparison of the means at 95% confidence level (α = 0.05) were performed. Higher concentrations of plasticizers increased percentage elongation to the breaking point. When glycerol concentration was raised to over 20%, flexibility of the layers improved but their water vapor permeability increased. The minimum passage of water vapor was that of fish-skin gelatin films containing clay nanoparticles and 30% sorbitol, and the maximum that of bovine gelatin films with high gel-forming ability which contained nanoparticles but no plasticizers (p 0.05). All samples had heat sealing capability, and fish-skin gelatin films containing clay nanoparticles had better heat sealing capability compared with the other samples so that fish-skin gelatin films containing clay nanoparticles with 25% glycerol and 5% sorbitol had the highest flexibility and tensile strength, and remained attached to where they were heat sealed. Electron microscope images showed that films without plasticizers had uniform surfaces, but that samples containing glycerol at concentrations of over 0.20 g/g gelatin exhibited cavities between gelatin chains and that water vapor permeability in gelatin films containing clay nanoparticles. 展开更多
关键词 GELATin CLAY NANOPARTICLES PLASTICIZER mechanical Properties water Vapor PERMEABILITY
下载PDF
Strength weakening and its micromechanism in water–rock interaction,a short review in laboratory tests 被引量:5
7
作者 Cun Zhang Qingsheng Bai +3 位作者 Penghua Han Lei Wang Xiaojie Wang Fangtian Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第1期18-32,共15页
Water–rock interaction(WRI)is a topic of interest in geology and geotechnical engineering.Many geological hazards and engineering safety problems are severe under the WRI.This study focuses on the water weakening of ... Water–rock interaction(WRI)is a topic of interest in geology and geotechnical engineering.Many geological hazards and engineering safety problems are severe under the WRI.This study focuses on the water weakening of rock strength and its infuencing factors(water content,immersion time,and wetting–drying cycles).The strength of the rock mass decreases to varying degrees with water content,immersion time,and wetting–drying cycles depending on the rock mass type and mineral composition.The corresponding acoustic emission count and intensity and infrared radiation intensity also weaken accordingly.WRI enhances the plasticity of rock mass and reduces its brittleness.Various microscopic methods for studying the pore characterization and weakening mechanism of the WRI were compared and analyzed.Various methods should be adopted to study the pore evolution of WRI comprehensively.Microscopic methods are used to study the weakening mechanism of WRI.In future work,the mechanical parameters of rocks weakened under long-term water immersion(over years)should be considered,and more attention should be paid to how the laboratory scale is applied to the engineering scale. 展开更多
关键词 water–rock interaction Weakening mechanism water content immersion time Wetting–drying cycles Microscopic methods
下载PDF
Bulk metallic glass rings prepared by a modified water quenching method 被引量:2
8
作者 Xing-chao Zhang Yong Zhang Xiao-hua Chen Guo-liang Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第1期108-111,共4页
Bulk metallic glass rings have the potential applications as annular gasket and active solder in special fields. The bulk metallic glass ring of ZГ41.2Ti13.8Cu12.5Ni10.0Be22.5 with the outer diameter, the inner diame... Bulk metallic glass rings have the potential applications as annular gasket and active solder in special fields. The bulk metallic glass ring of ZГ41.2Ti13.8Cu12.5Ni10.0Be22.5 with the outer diameter, the inner diameter, and the thickness of 38, 36, and 5 mm, respectively, was prepared by using a special shaped quartz tube water quenching method. The mechanical properties along the whole cross section were investigated by a nanoindentation method, and no evident variation of the Young's modulus and hardness was found, further indicating the single amorphous structure. Amorphous ring and tube-shape parts with different dimensions can be produced by this method. 展开更多
关键词 bulk metallic glass machine parts water quenching mechanical properties
下载PDF
Mechanical Properties of Sea Water Sea Sand Coral Concrete Modified with Different Cement and Fiber Types 被引量:4
9
作者 Xibo Qi Yijie Huang +3 位作者 Xiaowei Li Zhenhua Hu Jingwei Ying Dayong Li 《Journal of Renewable Materials》 SCIE EI 2020年第8期915-937,共23页
The mechanical properties of modified sea water sea sand coral concrete(SWSSCC)under axial compression were experimentally studied.Two different parameters were considered in this test:types of cement and fiber.An exp... The mechanical properties of modified sea water sea sand coral concrete(SWSSCC)under axial compression were experimentally studied.Two different parameters were considered in this test:types of cement and fiber.An experimental campaign was developed involving uniaxial compression tests and the use of digital image correlation(DIC)method to analyze the strain distribution and crack propagation of specimen.Test results indicated that the compressive strength and elastic modulus of SWSSCC were improved by adding stainless steel fibers(SSF),while polypropylene fibers(PF)enhanced the SWSSCC peak deformation.It was found that the elastic modulus and strength of SWSSCC using ordinary Portland cement(OPC)were higher compared to specimen with low alkalinity sulphoaluminate cement(LAS).Typical strain distribution changed with the variation of fiber types.The propagation and characteristics of cracks in SWSSCC containing PF were similar to those of cracks in SWSSCC.However,the propagation of cracks and the development of plastic deformation in SWSSCC were effectively hindered by adopting SSF.Finally,an analytical stress-strain expression of specimen considering the influences of fibers was established.The obtained results would provide a basis for the application of SWSSCC. 展开更多
关键词 Sea water sea sand coral concrete modified concrete mechanical properties stress-strain curve crack propagation strain distribution
下载PDF
Failure mechanism and control technology of water-immersed roadway in high-stress and soft rock in a deep mine 被引量:11
10
作者 Yang Renshu Li Yongliang +3 位作者 Guo Dongming Yao Lan Yang Tongmao Li Taotao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期245-252,共8页
Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering backg... Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering background and employing field investigation, tests of rock structure, mechanical properties and mineral composition. The main factors leading to the surrounding rock failure include the high and complex stress state of the water sumps, high-clay content and water-weakened rock, and the unreasonable support design. In this paper, the broken and fractured rock mass near roadway opening is considered as ground small-structure, and deep stable rock mass as ground large-structure. A support technology focusing on cutting off the water, strengthening the small structure of the rock and transferring the large structure of the rock is proposed. The proposed support technology of interconnecting the large and small structures, based on high-strength bolts, high-stiffness shotcrete layer plugging water,strengthening the small structure with deep-hole grouting and shallow-hole grouting, highpretensioned cables tensioned twice to make the large and small structures bearing the pressure evenly,channel-steel and high-pretensioned cables are used to control floor heave. The numerical simulation and field test show that this support system can control the rock deformation of the water sumps and provide technical support to similar roadway support designs. 展开更多
关键词 High stress and soft rock water immersion Failure mechanism Large and small structures Rework control
下载PDF
The Effect of Water Absorption on Mechanical Properties of Wood Flour/Wheat Husk Polypropylene Hybrid Composites 被引量:1
11
作者 Pradeep Upadhyaya Manoj Garg +1 位作者 Vijai Kumar Ajay K. Nema 《Materials Sciences and Applications》 2012年第5期317-325,共9页
The main objectives of this research were to study the effect of water absorption on mechanical properties of hybrid fiber reinforcement for polypropylene composites. The poor resistance towards water absorption is on... The main objectives of this research were to study the effect of water absorption on mechanical properties of hybrid fiber reinforcement for polypropylene composites. The poor resistance towards water absorption is one of the draw- backs of natural fibers. Hybrid filler-polypropylene composites are subjected to water immersion tests in order to study the effects of water absorption on the mechanical properties. Composites specimens containing 30 phr and 40 phr fiber weight were prepared by melt blending process. Water absorption tests were conducted by immersion specimens in distilled water at room temperature for different time durations (24, 48, 72, 96, 120, 144, 168, 192 hours). The tensile, flexural and impact properties were investigated before and after water absorption. The percentage of moisture uptake increased as the increasing order of the filler loading due to the high cellulose content. The phase morphology of wood flour/wheat husk polypropylene hybrid composites were investigated by SEM, the dynamic mechanical properties of the composite are analyzed by DMA & wheat, wood filler interaction are analyzed by FT-IR. 展开更多
关键词 Hybrid POLYPROPYLENE COMPOSITES water ABSORPTION mechanical PROPERTIES
下载PDF
Organo-silane compounds in medium density fiberboard:physical and mechanical properties 被引量:2
12
作者 Hamid Reza Taghiyari Ali Karimi Paridah Md.Tahir 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第2期495-500,共6页
We studied the effects of nanoparticles of organo-silane(NOS) compounds in the size range of20–80 nm on physical and mechanical properties in medium density fiberboard,and used NOS at four consumption levels of 0,5... We studied the effects of nanoparticles of organo-silane(NOS) compounds in the size range of20–80 nm on physical and mechanical properties in medium density fiberboard,and used NOS at four consumption levels of 0,50,100,and 150 g kg-1dry wood fibers.Density of all treatments was kept constant at 0.67 g cm-3.The water-repellent property of organo-silane significantly reduced water absorption(WA) and thickness swelling but mechanical properties declined due to the reduced proportion of wood-fiber as organo-silane was added to the matrix:the compression ratio of MDF panels and the integrity among wood-fibers both declined,resulting in reduced mechanical properties.We recommend use of 50 g of NOS/kg wood-fiber to improve WA and thickness swelling while retaining acceptable mechanical properties. 展开更多
关键词 Composite-board Medium-density fiberboard(MDF) NANOTECHNOLOGY Physical and mechanical properties water-repellant Organo-silane
下载PDF
PRELIMINARY STUDIES ON STRUCTURES AND PROPERTIES OF WATER-RETENTIVE, FLAME-RETARDANT ACRYLIC FIBERS
13
作者 刘兆峰 林伟平 +1 位作者 杨明远 吴宗铨 《Journal of China Textile University(English Edition)》 EI CAS 1990年第1期45-52,共8页
The blend fibers of acrylonitrile-vinylidene chloride-sodium methallysulfonate copolymer(AN-VDC-SMAS) and cellulose acetate (CA) with various blend ratios were investigated bymeans of SEM, DDV, WAXD, etc. The results ... The blend fibers of acrylonitrile-vinylidene chloride-sodium methallysulfonate copolymer(AN-VDC-SMAS) and cellulose acetate (CA) with various blend ratios were investigated bymeans of SEM, DDV, WAXD, etc. The results show that AN-VDC-SMAS and CA areincompatibale; the numerous microvoids in the blend fiber resulted from the phase seperationcan remarkably improve the water absorbability and the dyeing behavior but hardly influencethe mechanical properties. On the other hand, the crystal structure of the continuous phaseAN-VDC-SMAS is not influnced by the dispersed phase CA. 展开更多
关键词 compatibility CRYSTAL PERFECTION CRYSTAL structure morphology mechanical properties water absorbability flame retardancy DYEinG saturation UPTAKE
下载PDF
Development and Evaluation of the Mechanical Properties of Coconut Fibre Reinforced Low Density Polyethylene Composite
14
作者 Ahmed Mohammed Bukar Abubakar Mohammed El-Jummah Abba Alhaji Hammajam 《Open Journal of Composite Materials》 CAS 2022年第3期83-97,共15页
This research work developed and evaluated the mechanical properties of coconut fibre reinforced low density polyethylene (LPDE) composite material. The effect of fibre loading on the mechanical properties: tensile, f... This research work developed and evaluated the mechanical properties of coconut fibre reinforced low density polyethylene (LPDE) composite material. The effect of fibre loading on the mechanical properties: tensile, flexural, and impact of the developed composite material have been investigated. Also carried out was the effect of fibre loading on the water absorptivity of the developed material. Sample categories of the developed composite were prepared by varying the fibre contents by weight at 0%, 10%, 20%, and 30%. The aim is to reduce the excessive waste disposal of LDPE materials that are largely found in the form of disposed water package materials (or pure water sachets) that usually affects the environment in the form of pollution. The water retting process was applied in extracting and cleaning fibre (or coir), while the mixed coir-LDPE (or developed composite material) was prepared by Compression Moulding Technique (CMT). The tensile and flexural properties were tested using Hounsfield Monsanto Tensometer (type w) while the impact properties were tested using the Charpy Impact testing machine. The microstructure of the composite was investigated using Scanning Electron Microscopy (SEM). The fractured surface morphology of the composite samples indicated a homogeneous mixture of the coir fibre and LDPE matrix. However, weak interfacial bonding between the coir fibre and LDPE matrix was also observed. The analysis of the water absorptivity showed that the developed composite materials have low water absorptivity at low fibre loading. However, at higher fibre loading, the water absorptivity increases significantly. 展开更多
关键词 Coconut Fibre Low Density Polyethylene COMPOSITE mechanical Properties water Absorptivity
下载PDF
水发条件对海参(Acaudina molpadioidea)质构特性及微观结构的影响研究 被引量:25
15
作者 徐志斌 陈青 励建荣 《食品科学》 EI CAS CSCD 北大核心 2010年第7期37-41,共5页
利用TPA质构分析法和Masson三色染色法研究水发条件对东海海参微观结构和质构特性的影响,比较不同水发条件下体系组织结构和质构特性的差异。研究表明,不同水发条件所得的海参质构参数差异显著,水煮温度对海参的硬度、黏附性、弹性、凝... 利用TPA质构分析法和Masson三色染色法研究水发条件对东海海参微观结构和质构特性的影响,比较不同水发条件下体系组织结构和质构特性的差异。研究表明,不同水发条件所得的海参质构参数差异显著,水煮温度对海参的硬度、黏附性、弹性、凝聚性和回复性有显著影响,保温温度则对海参的硬度、黏附性、咀嚼性、凝聚性和回复性有显著影响,而且海参硬度和黏附性两个质构参数还受水煮温度和保温温度间交互作用的极显著影响。与之相对应,在不同的水发条件下,海参的组织结构存在明显的差异。此外,水发海参的各项质构参数间,黏附性与硬度、咀嚼性、弹性、凝聚性之间均呈现负相关,硬度与咀嚼性之间以及凝聚性与回复性之间分别呈现很好的正相关性。 展开更多
关键词 海参 水发 质构特性 微观结构
下载PDF
等离子浸没离子注入沉积纳米TiN薄膜的机械性能研究 被引量:7
16
作者 万国江 黄楠 +2 位作者 冷永祥 杨萍 陈俊英 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2003年第4期904-910,共7页
采用等离子体浸没离子注入沉积(PⅢ-D)在不锈钢基底上合成TiN薄膜。对沉积TiN薄膜后的不锈钢试样进行拉伸变形实验,扫描电子显微镜(SEM)原位观察表明在较大塑性变形量下氮化钛薄膜没有剥落和裂纹出现。采用划痕法测得薄膜与基体间有较... 采用等离子体浸没离子注入沉积(PⅢ-D)在不锈钢基底上合成TiN薄膜。对沉积TiN薄膜后的不锈钢试样进行拉伸变形实验,扫描电子显微镜(SEM)原位观察表明在较大塑性变形量下氮化钛薄膜没有剥落和裂纹出现。采用划痕法测得薄膜与基体间有较强的结合力。薄膜的纳米压痕测试显示出很高的纳米硬度和弹性模量值。通过对合成TiN薄膜的TEM结构测试、AFM表面观察、AES成分结果分析,认为该合成薄膜的纳米级晶粒尺寸、致密的表面质量以及成分沿深度的分布是其具有优异的抗塑性变形性能以及高的结合强度的原因。 展开更多
关键词 纳米薄膜 机械性能 Tin 等离子体浸没离子注入沉积
下载PDF
等离子体浸没离子注入与沉积合成TiN薄膜的滚动接触疲劳寿命和机械性能 被引量:11
17
作者 刘洪喜 蒋业华 +3 位作者 周荣 周荣锋 金青林 汤宝寅 《金属学报》 SCIE EI CAS CSCD 北大核心 2008年第3期325-330,共6页
采用等离子体浸没离子注入与沉积(PIII&D)技术在AISI 52100轴承钢表面合成了高硬耐磨的TiN薄膜.膜层元素分布、化学组成和表面形貌分别用XRD,XPS表征.合成薄膜前后试样的滚动接触疲劳寿命和摩擦磨损性能分别由球棒疲劳磨损试验机和... 采用等离子体浸没离子注入与沉积(PIII&D)技术在AISI 52100轴承钢表面合成了高硬耐磨的TiN薄膜.膜层元素分布、化学组成和表面形貌分别用XRD,XPS表征.合成薄膜前后试样的滚动接触疲劳寿命和摩擦磨损性能分别由球棒疲劳磨损试验机和球-盘磨损试验机测定;疲劳破坏后的微观形貌通过SEM观察;薄膜力学性能经纳米压痕和纳米划痕实验评价.结果表明,TiN膜中还含有少量的TiO_2和Ti,N,O的化台物.在优化条件下,TiN膜层致密均匀,与基体结合良好,纳米硬度和弹性模量分别达到25和350 GPa;最低摩擦系数由基体的0.92下降到0.2.被处理薄膜试件在90%置信区间下的最大L_(10),L_(50),L_a和(?)寿命较基体分别提高了约4.5,1.8,1.3和1.2倍,疲劳寿命的分散性得到了显著改善. 展开更多
关键词 等离子体浸没离子注入与沉积 Tin薄膜 机械性能 滚动接触疲劳寿命 轴承钢
下载PDF
Experimental Research on the Physical and Mechanical Properties of Concrete with Recycled Plastic Aggregates 被引量:4
18
作者 Haikuan Wu Changwu Liu +1 位作者 Song Shi Kangliang Chen 《Journal of Renewable Materials》 SCIE EI 2020年第7期727-738,共12页
In order to study the effect of recycled plastic particles on the physical and mechanical properties of concrete,recycled plastic concrete with 0,3%,5%and 7%content(by weight)was designed.The compressive strength,spli... In order to study the effect of recycled plastic particles on the physical and mechanical properties of concrete,recycled plastic concrete with 0,3%,5%and 7%content(by weight)was designed.The compressive strength,splitting tensile strength and the change of mass caused by water absorption during curing were measured.The results show that the strength of concrete is increased by adding recycled plastic into concrete.Among them,the compressive strength and the splitting tensile strength of concrete is the best when the plastic content is 5%.With the increase of plastic content,the development speed of early strength slows down.Silane coupling agent plays a positive role in the strength of recycled plastic concrete.The water absorption saturation of concrete has been basically completed in the early stage.The addition of silane coupling agent makes the porosity of concrete reduce and the water absorption of concrete become poor.By summing up the physical and mechanical properties of recycled plastic concrete,it could be found that the addition of recycled plastic was effective for the modification of concrete materials.Under the control of the amount of recycled plastic,the strength of concrete with recycled plastic aggregates can meet the engineering requirements. 展开更多
关键词 Compressive strength recycled plastic concrete splitting tensile strength water absorption mechanical properties
下载PDF
A Review of Recent Advances in Hybrid Natural Fiber Reinforced Polymer Composites 被引量:2
19
作者 Jorge Neto Henrique Queiroz +3 位作者 Ricardo Aguiar Rosemere Lima Daniel Cavalcanti Mariana Doina Banea 《Journal of Renewable Materials》 SCIE EI 2022年第3期561-589,共29页
Natural fiber reinforced polymer composites(NFRCs)have demonstrated great potential for many different applications in various industries due to their advantages compared to synthetic fiber-reinforced composites,such ... Natural fiber reinforced polymer composites(NFRCs)have demonstrated great potential for many different applications in various industries due to their advantages compared to synthetic fiber-reinforced composites,such as low environmental impact and low cost.However,one of the drawbacks is that the NFRCs present relatively low mechanical properties and the absorption of humidity due to the hydrophilic characteristic of the natural fibre.One method to increase their performance is hybridization.Therefore,understanding the properties and potential of using multiple reinforcement’s materials to develop hybrid composites is of great interest.This paper provides an overview of the recent advances in hybrid natural fiber reinforced polymer composites.First,the main factors that affect the performance of hybrid fiber-reinforced composites were briefly discussed.The effect of hybridization on the mechanical and thermal properties of hybrid composites reinforced with several types of natural fibers(i.e.,sisal,jute,curauá,ramie,banana,etc.)or natural fibers combined with synthetic fibers is pre-sented.Finally,the water absorption behaviour of hybrid fiber-reinforced composites is also discussed.It was con-cluded that the main challenges that need to be addressed in order to increase the use of natural-natural or natural-synthetic hybrid composites in industry are the poor adhesion between natural fibers and matrix,thermal stability and moisture absorption of natural fibers.Some of these challenges were addressed by recent develop-ment in fibers treatment and modification,and product innovation(hybridization). 展开更多
关键词 Natural fiber composites(NFC) hybrid composites mechanical properties thermal properties water absorption
下载PDF
Novel Mycelium-Based Biocomposites (MBB) as Building Materials 被引量:2
20
作者 Zinta Zimele Ilze Irbe +3 位作者 Juris Grinins Oskars Bikovens Anrijs Verovkins Diana Bajare 《Journal of Renewable Materials》 SCIE EI 2020年第9期1067-1076,共10页
Novel mycelium-based biocomposites(MBB)were obtained from local agricultural(hemp shives)and forestry(wood chips)by-products which were bounded together with natural growth of fungal mycelium.As a result,hemp mycocomp... Novel mycelium-based biocomposites(MBB)were obtained from local agricultural(hemp shives)and forestry(wood chips)by-products which were bounded together with natural growth of fungal mycelium.As a result,hemp mycocomposites(HMC)and wood mycocomposites(WMC)were manufactured.Mechanical,water absorption and biodegradation properties of MBB were investigated.MBB were characterized also by ash content and elemental composition.The results of MBB were compared with the reference materials such as the commercial MBB material manufactured by Ecovative®Design(EV),hemp magnesium oxychloride concrete(HC)and cemented wood wool panel(CW),manufactured by CEWOOD®.The mechanical properties of HMC and WMC showed that the bending strength difference was about 30%,with a better result for HMC.Compression strength was better for WMC by about 60%compared to that of HMC.The mechanical strength of HMC and HC materials was equal;both materials contained hemp shives but differed by the binding material.Water absorption and volumetric swelling tests showed that HMC and WMC could be considered as potential biosorbents.Ash content and elemental analysis showed that reference materials(CW,HC)contained significant amounts of inorganic compounds that decreased the biodegradation rate,compared to the case of HMC and WMC materials.The biodegradation results of HMC and WMC,after 12 weeks,revealed a mass loss(ML)above 70%,while in the case of EV,HC and CW,it was about 60%,17%and only 6%,respectively.MBB were completely biodegradable. 展开更多
关键词 Mycelium-based biocomposites(MBB) mechanical properties water absorption biodegradation
下载PDF
上一页 1 2 77 下一页 到第
使用帮助 返回顶部