Since the beginning of the 20th century, many researches on the sealing characteristic of mechanical seals were carried out broadly and in depth by various methods and some leakage models were built. But due to the la...Since the beginning of the 20th century, many researches on the sealing characteristic of mechanical seals were carried out broadly and in depth by various methods and some leakage models were built. But due to the lack of the way to characterize the main factors of influence on the leakage, most of the early researches were based on the assumptions that the seal faces topography and the frictional conditions were invariant. In the early built models, the effect of the surface topography change of the seal face on the leakage rate was neglected. Based on the fractal theory, the contact of end faces of the rotary and stationary rings was simplified to be the contact of a rough surface and an ideal rigid smooth surface, and the contact interface's cavity size-distribution function as well as the fractal characteristic of the cavity profile curve was discussed. By analyzing the influence of abrasion on the seal face topography and the leakage channel, the time-correlation leakage prediction model of mechanical seals based on the fractal theory was established and the method for predicting the leakage rate of mechanical seals with parallel plane was proposed. The values of the leakage rate predicted theoretically are similar to the measured values of the leakage rate in the model test and in situ test. The experimental results indicate that the leakage rate of mechanical seals is a transient value. The surface topography of the end faces of the seal tings and its change during the frictional wear of mechanical seals can be accurately characterized by the fractal parameters. Under the work conditions of changeless frictional mechanism, the fractal parameters measured or calculated based on the accelerated testing equation can be used to predict the leakage rate of mechanical seal in service. The proposed research provides the basis for determining the leakage state and predicting working life of mechanical seal.展开更多
Heat generated by friction between faces of mechanica l seals is a major factor that causes deterioration of the seals and shortens th eir service life. Excessive temperature rise can greatly alter the seal geometry a...Heat generated by friction between faces of mechanica l seals is a major factor that causes deterioration of the seals and shortens th eir service life. Excessive temperature rise can greatly alter the seal geometry and vaporize the sealing fluid, resulting in friction of boundary lubrication. These effects on face seals usually lead to excessive leakage and ultimately ren der the seal inoperable. In order to maintain the reliability of seals, high fri ction and unwanted wear must be avoided. Using the laser-texturing process to produce regular micro-surface structures is a fast and convenient technique compared to some more conventional etching or erosion technique currently used by the seal industry for various grooved face seals. Indeed, by using a pulse laser, better control is obtained on the geometr y, size and pore ratio of seal rings made of metallic or ceramic materials. In t his study, seal rings are made of silicon carbide and carbon. Mating faces of th e rings are polished and only silicon carbide rings are laser-textured. The las er texturing can be controlled to produce spherical pores at selected diameters, depths and pore ratio. The textured rings are then super-polished to remove th e bulges formed on the pores rims. After this process the average pore diameter, pore depth and pore ratio reach the predetermined parameter. Some untextured ri ngs are also treated to the same surface roughness and served as a reference for comparison of the textured rings. A special test rig is used to simulate a mech anical seal system and to measure the effect of the laser texturing on friction and seal performance. Tests are performed at various rotational speeds and vario us axial loads. Compared with the conventional mechanical seals, temperature rise, friction torq ue and friction coefficient of mechanical seals with laser-textured seal faces are much lower. These preliminary results show the potential of improving fricti on performance and increasing seal life with laser-textured seal faces.展开更多
The loads acting on the sealing elements of balanced mechanical seals are analyzed. When the balance factor approaches the back pressure factor, the spring pressure will become main part of the face pressure. The leak...The loads acting on the sealing elements of balanced mechanical seals are analyzed. When the balance factor approaches the back pressure factor, the spring pressure will become main part of the face pressure. The leakage model of balanced mechanical seals is established on the base of M-B model for rough surface. Several GY-70 type balanced mechanical seals are tested. The influences of the spring pressure both on the leakage rate and on the friction characteristic of balanced mechanical seals are investigated. The research results indicate that as spring pressure increases, both the clear-ance between two end faces and the leakage rate will decrease, and the friction will be more serious because lubrication medium between the rotating ring and the stationary ring reduces, though the increase of the spring pressure may not be enough to change the face friction state of mechanical seals. There exists an optimum spring pressure for mechanical seal operation. Under this spring pres-sure, not only leakage rate is small, but also the seal end surfaces have a fine friction characteristic. Under different operating conditions, identical type mechanical seals may possess different spring pressure. Appropriate selection of spring pressure is valuable to realize long-period and small leakage rate operating of balanced mechanical seals.展开更多
The coupling effect among the flow of fluid film, the frictional heat of fluid film and the thermal deformation of sealing rings is inherent in mechanical seals. The frictional heat transfer analysis was carded out to...The coupling effect among the flow of fluid film, the frictional heat of fluid film and the thermal deformation of sealing rings is inherent in mechanical seals. The frictional heat transfer analysis was carded out to optimize the geometrical parameters of the sealing rings, such as the length, the inner radius and the outer radius. The geometrical parameters of spiral grooves, such as the spiral angle, the end radius, the groove depth, the ratio of the groove width to the weir width and the number of the grooves, were optimized by regarding the maximum bearing force of fluid film as the optimization objective with the coupling effect considered. The depth of spiral groove was designed to gradually increase from the end radius of spiral groove to the outer radius of end face in order to decrease the weakening effect of thermal deformation on the hydrodynamic effect of spiral grooves. The end faces of sealing rings were machined to form a divergent gap at inner radius, and a parallel gap will form to reduce the leakage rate when the thermal deformation takes place. The improved spiral groove mechanical seal possesses good heat transfer performance and sealing ability.展开更多
Considering the effect of viscosity-temperature relationship and cavitation of micro-scale film,the influencing factors on hydrodynamic lubrication performance of upstream pumping mechanical seal were investigated bas...Considering the effect of viscosity-temperature relationship and cavitation of micro-scale film,the influencing factors on hydrodynamic lubrication performance of upstream pumping mechanical seal were investigated based on the theory of hydrodynamic lubrication.N-S equation,energy equation,viscosity-temperature equation and vapor transport equation were solved with the finite volume method by using Fluent software,which was performed to analyze the influence of the viscosity-temperature and cavitation effect on hydrodynamic lubrication failure of the film.The research demonstrates that it will lead to the significant difference of the temperature field by considering the coupling of temperature and viscosity.When the film thickness decreases and the rotating speed rises,cavitation regions and viscous friction heat increases,the opening force of the film is also enhanced.However,the growth rate is restricted to the cavitation regions and viscous friction heat,and the opening force begins to decline to a certain extent,and thereby being insufficient to open the surfaces of the seals and leading to the failure of automatic adjustment function and severe wear,lubrication failure occurrs.Through comprehensive research on the influences of viscosity-temperature and cavitation effect on hydrodynamic lubrication performance,the theories of failure and design of upstream pumping mechanical seal are further developed.展开更多
In order to investigate the sealing performance variation resulted from the thermal deformation of the end faces, the equations to calculate the fluid film pressure distribution, the bearing force and the leakage rate...In order to investigate the sealing performance variation resulted from the thermal deformation of the end faces, the equations to calculate the fluid film pressure distribution, the bearing force and the leakage rate are derived, for the fluid film both in parallel gap and in wedgy gap. The geometrical parameters of the sealing members are optimized by means of heat transfer analysis and complex method. The analysis results indicate that the shallow spiral grooves can generate hydrodynamic pressure while the rotating ring rotates and the bearing force of the fluid film in spiral groove end faces is much larger than that in the flat end faces. The deformation increases the bearing force of the fluid film in flat end faces, but it decreases the hydrodynamic pressure of the fluid film in spiral groove end faces. The gap dimensions which determine the characteristics of the fluid film is obtained by coupling analysis of the frictional heat and the thermal deformation in consideration of the equilibrium condition of the bearing force and the closing force. For different gap dimensions, the relation- ship between the closing force and the leakage rate is also investigated, based on which the leakage rate can be controlled by adjusting the closing force.展开更多
Three-point head fixation was constructed to provide mechanical stability for single unit recording(SUR)on vestibular sensory system in living chinchilla previously.However,it is no more qualified to this work when th...Three-point head fixation was constructed to provide mechanical stability for single unit recording(SUR)on vestibular sensory system in living chinchilla previously.However,it is no more qualified to this work when the stimulation intensity becomes large because of frequent unit losing and neuron damage,which strongly implies that the mechanical stability has been broken during the stimulation.Here,we constructed a novel hea0 fixation(skull cap assistant head fixation)provided by skull cap on the basis of three-point head fixation in order to improve the mechanical stability for SUR under the stimulation with large magnitude.The large area bone connection is the feature and advantage of this improved method,which directly fixes the tested local nervous tissue and microelectrode in an intact stable system through skull cap except two ear bars and a tube face mask.Our data exhibited that skull cap assistant head fixation could significantly improve the success rate of neural response activity recording in the population of semicircular canal neurons under the stimulation with large intensity(amplitudd 00 deg/s).Based on the analysis of neural response activity and noise base-line during stimulation,our data further indicated that this method could significantly improve the mechanical stability for SUR during high-speed motion stimulation on vestibular system in living chinchilla.Skull cap assistant head fixation extends the application of SUR on vestibular neuron in linear response range and provides a solid foundation for electrophysiological research on vestibular sensory system in fhrther studies.展开更多
Single crystal silicon freestanding structures for tensile and fatigue testing were treated with KrF excimer laser to improve surface roughness and accordingly mechanical performance. Sample thickness was 5 μm. Local...Single crystal silicon freestanding structures for tensile and fatigue testing were treated with KrF excimer laser to improve surface roughness and accordingly mechanical performance. Sample thickness was 5 μm. Localized laser treatment was successful in eliminating the scallops developed during Bosch process and in reducing surface roughness. Harsh irradiation at laser energies up to 4 J/cm2 was only possible due to localized treatment without significant vibrations occurring on the freestanding samples that led to fracture in preliminary experiments at energies as low as 0.16 J/cm2. Finite element analysis was used to investigate the temperature distribution on the irradiated structures. Atomic force microscopy (AFM) and Raman spectroscopy were also used to assess surface roughness, crystallinity changes and surface stresses developing on surfaces subjected to perpendicular laser irradiation. At a high energy (3.2 J/cm2) the top surface showed a decrease of roughness compared to fabricated samples. Raman spectroscopy showed the dominance of crystalline silicon after laser irradiation. The effects of laser energy, number of展开更多
Recent studies on staggered labyrinth seals have focused on the effects of different parameters,such as the pressure ratio and rotational speed on the leakage flow rate.However,few investigations pay sufficient attent...Recent studies on staggered labyrinth seals have focused on the effects of different parameters,such as the pressure ratio and rotational speed on the leakage flow rate.However,few investigations pay sufficient attention to flow details and the sealing mechanism,which would be of practical importance in designing seals having higher performance.This paper establishes a theoretical model to study the seal mechanism,thus revealing that leakage is determined by the pressure ratio and geometric structure.Numerical simulation is implemented to illustrate details of the flow field within the seal structure.Viscous dissipation is used to quantitatively investigate the contribution that each location makes to the seal performance,revealing that orifices and stagnation points are the most important positions in the seal structure,generating the most dissipation.The orifice is carefully studied by using the theoretical model.Experiments for different pressure ratios are conducted and the results match well with those of the theoretical model and numerical simulation,verifying the theoretical model and analysis of the seal mechanism.Three new designs,based on a good understanding of the seal mechanism,are presented,with one reducing leakage by 24.5%.展开更多
Coalbed gas extraction is an important means of exploiting and utilizing gas resources,as well as a means of preventing coal mine disasters.In view of the low gas extraction rate from coalbeds with high gas content an...Coalbed gas extraction is an important means of exploiting and utilizing gas resources,as well as a means of preventing coal mine disasters.In view of the low gas extraction rate from coalbeds with high gas content and low permeability,a method of improving permeability through deep-hole cumulative blasting is applied to develop initial directional fractures using a jet flow.Under the action of the blasting stress wave and detonation gas wedge,the fractures extend over a large range within the coal,thereby improving coalbed permeability.This study focuses on the criteria of cumulative blasting-induced coalbed fracturing based on a literature review of the penetration effect of cumulative blasting.On this basis,we summarize the coal fracturing zone,crack extension process,and the key technologies of charging and hole sealing for cumulative blasting.In addition,the latest research progress in the optimization of field test drilling and blasting parameters for cumulative blasting is introduced.Research findings indicate that the permeability improvement mechanism of cumulative blasting could be further enhanced,and the technology and technical equipment are in urgent need of improvement.Finally,development trends in the cumulative blasting permeability improvement technique are identified.展开更多
The construction process and load-bearing behaviors of Cast-in-place concrete thin-wall pipe piles are analyzed based on its application on Yantong Expressway Project. The low strain test, static load test and field e...The construction process and load-bearing behaviors of Cast-in-place concrete thin-wall pipe piles are analyzed based on its application on Yantong Expressway Project. The low strain test, static load test and field excavation were also carried out, and the bearing capacity of the new pile can meet the requirements of design. With the increase of pile diameter, the bearing capacity is increased. The settlement of composite foundation is decreased, when the replacement ratio of pile is increased. The test results also show that the load carried by inner soils is neglectable. According to the tests and application, it can be concluded that the new type of pile is convenient to construction with high bearing capacity and reliable quality, which has great potential in practical engineering.展开更多
For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmissi...For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.展开更多
To reveal the damage mechanism of high chrome bricks for opposed multi nozzle gasifier with expanded diameter,the chemical composition and the morphology of a used high chrome brick were researched using XRF,SEM and E...To reveal the damage mechanism of high chrome bricks for opposed multi nozzle gasifier with expanded diameter,the chemical composition and the morphology of a used high chrome brick were researched using XRF,SEM and EDS,and the properties of the high chrome bricks were improved by adding ultra fine alumina,alumina-chrome-iron oxide synthetic material with spinel structure,and chromium metal.The results show that(1)the high chrome brick is seriously damaged by the chemical dissolution of chrome as well as the chemical reactions at the slag/brick interface,the slag penetration and the structural spalling;(2)FeO in the slag reacts with Cr_(2)O_(3)in the brick to form a FeCr_(2)O_(4)layer on the particle surface thus leading to spalling;CaO reacts with SiO_(2)and Al2O3 in the brick forming a metamorphic layer of low melting point materials;due to the different thermal expansion coefficients of the metamorphic layer and the original brick,cracks appear and continue to expand and deepen under multiple temperature and pressure fluctuations thus leading to spalling of brick layer;(3)the improved brick has decreased apparent porosity,increased bulk density and compressive strength,and better thermal shock resistance compared with the original brick;after one cycle of on-site application,the furnace lining surface is smooth and flat with little damage,indicating that the improved high chrome bricks basically meet the working condition requirements of the opposed multi nozzle gasifier with expanded diameter,however,the final effects need to be evaluated in detail after the whole furnace service.展开更多
Continuous CNT fibers have been directly fabricated in a speed of 50 m/h-400 m/h,based on an improved chemical vapor deposition method.As-prepared fibers are further post-treated by acid.According to the SEM images an...Continuous CNT fibers have been directly fabricated in a speed of 50 m/h-400 m/h,based on an improved chemical vapor deposition method.As-prepared fibers are further post-treated by acid.According to the SEM images and Raman spectra,the acid treatment results in the compaction and surface modification of the CNTs in fibers,which are beneficial for the electron and load transfer.Compared to the HNO3 treatment,HClSO_3 or H_2SO_4 treatment is more effective for the improvement of the fibers' properties.After HCISO_3 treatment for 2 h,the fibers' strength and electrical conductivity reach up to-2 GPa and-4.3 MS/m,which are promoted by-200%and almost one order of magnitude than those without acid treatment,respectively.The load-bearing status of the CNT fibers are analyzed based on the downshifts of the G' band and the strain transfer factor of the fibers under tension.The results reveal that acid treatment could greatly enhance the load transfer and inter-bundle strength.With the HCISO3 treatment,the strain transfer factor is enhanced from-3.9%to-53.6%.展开更多
The friction coefficient and wear rate of pretreated graphite with liquid nitrogen were obtained by using a ball-on-disk tester,and the wear of GCr15–graphite seal pairs with the low-temperature time-dependent pretre...The friction coefficient and wear rate of pretreated graphite with liquid nitrogen were obtained by using a ball-on-disk tester,and the wear of GCr15–graphite seal pairs with the low-temperature time-dependent pretreatment was discussed by comparing the wear morphology.The results show that liquid nitrogen pretreatment can affect the hardness and interlayer spacing of graphite.The range of the friction coefficients of pretreated graphite changes from 0.17 to 0.22.With the increase of liquid nitrogen pretreatment time,the wear mechanism of graphite would change from dominated three-body wear to adhesion wear.The experimental results of the mechanical seal with liquid nitrogen pretreatment show that the wear rate of stator is less than 0.00165 mm^(3)·N^(−1)·m^(−1),and the graphite shows a good low-temperature compatibility.展开更多
The studies on the mechanisms and performances of the mechanical seals in reactor coolant pumps are very important for the safe operations of the pressurized water reactor power plants. Based on the hydrostatic mechan...The studies on the mechanisms and performances of the mechanical seals in reactor coolant pumps are very important for the safe operations of the pressurized water reactor power plants. Based on the hydrostatic mechanical seal in reactor coolant pumps, an analytical fluid-solid strong-interaction model is proposed in this paper. According to the design features and operafional principles of the seal, an analytical method to calculate the mechanical deformation of the seal assembly is developed based on the ring deformation theory. A strong-interaction algorithm combining the analysis of the mechanical deformation of the seal assembly and flow field between the seal faceplates is utilized, in which the three kinds of equations including the fluid domain, solid domain and coupling action are constituted in the same equations set and all the variables are solved simul- taneously. So the analytical fluid-solid strong-interaction model used for the seal is built. Moreover, the model is verified by the experimental results. Based on the model, the design parameters of the seal are studied. Two different conditions of the general case and fixed seal leakage rate are discussed respectively, and the regularities that the seal behaviors are affected by the parameters of the holding screws on the clamp rings and seal faceplates are obtained. The research results can provide a theoretical basis for performance analysis, design and assemblage of the seal. Compared to the numerical methods, the proposed model has the unique advantages of high efficiency, convenience and easy application of constraints.展开更多
In this paper, the effect of surface roughness on sealing clearance, pressure distribution, friction torque and leakage is studied by the thermal-elasto-hydrodynamic mixed lubrication model. A convergent nominal clear...In this paper, the effect of surface roughness on sealing clearance, pressure distribution, friction torque and leakage is studied by the thermal-elasto-hydrodynamic mixed lubrication model. A convergent nominal clearance is formed by the pressure de- formation and thermal deformation of the seal faces. This causes more serious wear in the inner side than that of the outer side of the contact area. Mass leakage increases with the growing of the surface roughness. The temperature and thermal defor- mation on the seal surface increases substantially if the roughness is reduced. The contact mechanical seals have consistent performance when the standard deviation of surface roughness is approximately 0.2 pm. In order to validate the theoretical analysis model, a method combining the measurement of three-dimensioned profile and Raman spectrum is proposed.展开更多
The reliability estimation of mechanical seals is of crucial importance due to their wide applications in pumps in various mechanical systems.Failure of mechanical seals might cause leakage,and might lead to system fa...The reliability estimation of mechanical seals is of crucial importance due to their wide applications in pumps in various mechanical systems.Failure of mechanical seals might cause leakage,and might lead to system failure and other relevant consequences.In this study,the reliability estimation for mechanical seals based on bivariate dependence analysis and considering model uncertainty is proposed.The friction torque and leakage rate are two degradation performance indicators of mechanical seals that can be described by the Wiener process,Gamma process,and inverse Gaussian process.The dependence between the two indicators can be described by different copula functions.Then the model uncertainty is considered in the reliability estimation using the Bayesian Model Average(BMA)method,while the unknown parameters in the model are estimated by Bayesian Markov Chain Monte Carlo(MCMC)method.A numerical simulation study and fatigue crack study are conducted to demonstrate the effectiveness of the BMA method to capture model uncertainty.A degradation test of mechanical seals is conducted to verify the proposed model.The optimal stochastic process models for two performance indicators and copula function are determined based on the degradation data.The results show the necessity of using the BMA method in degradation modeling.展开更多
基金supported by China Postdoctoral Science Foundation (Grant No. 20070410323)Jiangsu Provincial Planned Projects for Postdoctoral Research Funds of China (Grant No. 0701001C)Jiangsu Provincial Planned Projects for Fostering Talents of Six Scientific Fields of China (Grant No. 07-D-027)
文摘Since the beginning of the 20th century, many researches on the sealing characteristic of mechanical seals were carried out broadly and in depth by various methods and some leakage models were built. But due to the lack of the way to characterize the main factors of influence on the leakage, most of the early researches were based on the assumptions that the seal faces topography and the frictional conditions were invariant. In the early built models, the effect of the surface topography change of the seal face on the leakage rate was neglected. Based on the fractal theory, the contact of end faces of the rotary and stationary rings was simplified to be the contact of a rough surface and an ideal rigid smooth surface, and the contact interface's cavity size-distribution function as well as the fractal characteristic of the cavity profile curve was discussed. By analyzing the influence of abrasion on the seal face topography and the leakage channel, the time-correlation leakage prediction model of mechanical seals based on the fractal theory was established and the method for predicting the leakage rate of mechanical seals with parallel plane was proposed. The values of the leakage rate predicted theoretically are similar to the measured values of the leakage rate in the model test and in situ test. The experimental results indicate that the leakage rate of mechanical seals is a transient value. The surface topography of the end faces of the seal tings and its change during the frictional wear of mechanical seals can be accurately characterized by the fractal parameters. Under the work conditions of changeless frictional mechanism, the fractal parameters measured or calculated based on the accelerated testing equation can be used to predict the leakage rate of mechanical seal in service. The proposed research provides the basis for determining the leakage state and predicting working life of mechanical seal.
文摘Heat generated by friction between faces of mechanica l seals is a major factor that causes deterioration of the seals and shortens th eir service life. Excessive temperature rise can greatly alter the seal geometry and vaporize the sealing fluid, resulting in friction of boundary lubrication. These effects on face seals usually lead to excessive leakage and ultimately ren der the seal inoperable. In order to maintain the reliability of seals, high fri ction and unwanted wear must be avoided. Using the laser-texturing process to produce regular micro-surface structures is a fast and convenient technique compared to some more conventional etching or erosion technique currently used by the seal industry for various grooved face seals. Indeed, by using a pulse laser, better control is obtained on the geometr y, size and pore ratio of seal rings made of metallic or ceramic materials. In t his study, seal rings are made of silicon carbide and carbon. Mating faces of th e rings are polished and only silicon carbide rings are laser-textured. The las er texturing can be controlled to produce spherical pores at selected diameters, depths and pore ratio. The textured rings are then super-polished to remove th e bulges formed on the pores rims. After this process the average pore diameter, pore depth and pore ratio reach the predetermined parameter. Some untextured ri ngs are also treated to the same surface roughness and served as a reference for comparison of the textured rings. A special test rig is used to simulate a mech anical seal system and to measure the effect of the laser texturing on friction and seal performance. Tests are performed at various rotational speeds and vario us axial loads. Compared with the conventional mechanical seals, temperature rise, friction torq ue and friction coefficient of mechanical seals with laser-textured seal faces are much lower. These preliminary results show the potential of improving fricti on performance and increasing seal life with laser-textured seal faces.
基金This project is supported by Provincial Natural Science Foundation of Educa-tion Office of Jiangsu, China (No. 04KJD530090)Innovating Founda-tion for Doctoral Dissertation of Nanjing University of Technology, China (No. BSCX200510).
文摘The loads acting on the sealing elements of balanced mechanical seals are analyzed. When the balance factor approaches the back pressure factor, the spring pressure will become main part of the face pressure. The leakage model of balanced mechanical seals is established on the base of M-B model for rough surface. Several GY-70 type balanced mechanical seals are tested. The influences of the spring pressure both on the leakage rate and on the friction characteristic of balanced mechanical seals are investigated. The research results indicate that as spring pressure increases, both the clear-ance between two end faces and the leakage rate will decrease, and the friction will be more serious because lubrication medium between the rotating ring and the stationary ring reduces, though the increase of the spring pressure may not be enough to change the face friction state of mechanical seals. There exists an optimum spring pressure for mechanical seal operation. Under this spring pres-sure, not only leakage rate is small, but also the seal end surfaces have a fine friction characteristic. Under different operating conditions, identical type mechanical seals may possess different spring pressure. Appropriate selection of spring pressure is valuable to realize long-period and small leakage rate operating of balanced mechanical seals.
文摘The coupling effect among the flow of fluid film, the frictional heat of fluid film and the thermal deformation of sealing rings is inherent in mechanical seals. The frictional heat transfer analysis was carded out to optimize the geometrical parameters of the sealing rings, such as the length, the inner radius and the outer radius. The geometrical parameters of spiral grooves, such as the spiral angle, the end radius, the groove depth, the ratio of the groove width to the weir width and the number of the grooves, were optimized by regarding the maximum bearing force of fluid film as the optimization objective with the coupling effect considered. The depth of spiral groove was designed to gradually increase from the end radius of spiral groove to the outer radius of end face in order to decrease the weakening effect of thermal deformation on the hydrodynamic effect of spiral grooves. The end faces of sealing rings were machined to form a divergent gap at inner radius, and a parallel gap will form to reduce the leakage rate when the thermal deformation takes place. The improved spiral groove mechanical seal possesses good heat transfer performance and sealing ability.
基金National Natural Science Foundation of China(Grant No.51279067)
文摘Considering the effect of viscosity-temperature relationship and cavitation of micro-scale film,the influencing factors on hydrodynamic lubrication performance of upstream pumping mechanical seal were investigated based on the theory of hydrodynamic lubrication.N-S equation,energy equation,viscosity-temperature equation and vapor transport equation were solved with the finite volume method by using Fluent software,which was performed to analyze the influence of the viscosity-temperature and cavitation effect on hydrodynamic lubrication failure of the film.The research demonstrates that it will lead to the significant difference of the temperature field by considering the coupling of temperature and viscosity.When the film thickness decreases and the rotating speed rises,cavitation regions and viscous friction heat increases,the opening force of the film is also enhanced.However,the growth rate is restricted to the cavitation regions and viscous friction heat,and the opening force begins to decline to a certain extent,and thereby being insufficient to open the surfaces of the seals and leading to the failure of automatic adjustment function and severe wear,lubrication failure occurrs.Through comprehensive research on the influences of viscosity-temperature and cavitation effect on hydrodynamic lubrication performance,the theories of failure and design of upstream pumping mechanical seal are further developed.
文摘In order to investigate the sealing performance variation resulted from the thermal deformation of the end faces, the equations to calculate the fluid film pressure distribution, the bearing force and the leakage rate are derived, for the fluid film both in parallel gap and in wedgy gap. The geometrical parameters of the sealing members are optimized by means of heat transfer analysis and complex method. The analysis results indicate that the shallow spiral grooves can generate hydrodynamic pressure while the rotating ring rotates and the bearing force of the fluid film in spiral groove end faces is much larger than that in the flat end faces. The deformation increases the bearing force of the fluid film in flat end faces, but it decreases the hydrodynamic pressure of the fluid film in spiral groove end faces. The gap dimensions which determine the characteristics of the fluid film is obtained by coupling analysis of the frictional heat and the thermal deformation in consideration of the equilibrium condition of the bearing force and the closing force. For different gap dimensions, the relation- ship between the closing force and the leakage rate is also investigated, based on which the leakage rate can be controlled by adjusting the closing force.
文摘Three-point head fixation was constructed to provide mechanical stability for single unit recording(SUR)on vestibular sensory system in living chinchilla previously.However,it is no more qualified to this work when the stimulation intensity becomes large because of frequent unit losing and neuron damage,which strongly implies that the mechanical stability has been broken during the stimulation.Here,we constructed a novel hea0 fixation(skull cap assistant head fixation)provided by skull cap on the basis of three-point head fixation in order to improve the mechanical stability for SUR under the stimulation with large magnitude.The large area bone connection is the feature and advantage of this improved method,which directly fixes the tested local nervous tissue and microelectrode in an intact stable system through skull cap except two ear bars and a tube face mask.Our data exhibited that skull cap assistant head fixation could significantly improve the success rate of neural response activity recording in the population of semicircular canal neurons under the stimulation with large intensity(amplitudd 00 deg/s).Based on the analysis of neural response activity and noise base-line during stimulation,our data further indicated that this method could significantly improve the mechanical stability for SUR during high-speed motion stimulation on vestibular system in living chinchilla.Skull cap assistant head fixation extends the application of SUR on vestibular neuron in linear response range and provides a solid foundation for electrophysiological research on vestibular sensory system in fhrther studies.
文摘Single crystal silicon freestanding structures for tensile and fatigue testing were treated with KrF excimer laser to improve surface roughness and accordingly mechanical performance. Sample thickness was 5 μm. Localized laser treatment was successful in eliminating the scallops developed during Bosch process and in reducing surface roughness. Harsh irradiation at laser energies up to 4 J/cm2 was only possible due to localized treatment without significant vibrations occurring on the freestanding samples that led to fracture in preliminary experiments at energies as low as 0.16 J/cm2. Finite element analysis was used to investigate the temperature distribution on the irradiated structures. Atomic force microscopy (AFM) and Raman spectroscopy were also used to assess surface roughness, crystallinity changes and surface stresses developing on surfaces subjected to perpendicular laser irradiation. At a high energy (3.2 J/cm2) the top surface showed a decrease of roughness compared to fabricated samples. Raman spectroscopy showed the dominance of crystalline silicon after laser irradiation. The effects of laser energy, number of
基金Supported by National Natural Science Foundation of China(Grant No.51136003)the support provided by Doctor HUANG Weifeng,Doctor LI Yongjian,and Professor WANG Yuming at Department,of Mechanical Engineering, Tsinghua University,China,in establishing the test rig for the labyrinth seal
文摘Recent studies on staggered labyrinth seals have focused on the effects of different parameters,such as the pressure ratio and rotational speed on the leakage flow rate.However,few investigations pay sufficient attention to flow details and the sealing mechanism,which would be of practical importance in designing seals having higher performance.This paper establishes a theoretical model to study the seal mechanism,thus revealing that leakage is determined by the pressure ratio and geometric structure.Numerical simulation is implemented to illustrate details of the flow field within the seal structure.Viscous dissipation is used to quantitatively investigate the contribution that each location makes to the seal performance,revealing that orifices and stagnation points are the most important positions in the seal structure,generating the most dissipation.The orifice is carefully studied by using the theoretical model.Experiments for different pressure ratios are conducted and the results match well with those of the theoretical model and numerical simulation,verifying the theoretical model and analysis of the seal mechanism.Three new designs,based on a good understanding of the seal mechanism,are presented,with one reducing leakage by 24.5%.
基金The project was supported by the National Science Foundation of China(41430640,U1704242).
文摘Coalbed gas extraction is an important means of exploiting and utilizing gas resources,as well as a means of preventing coal mine disasters.In view of the low gas extraction rate from coalbeds with high gas content and low permeability,a method of improving permeability through deep-hole cumulative blasting is applied to develop initial directional fractures using a jet flow.Under the action of the blasting stress wave and detonation gas wedge,the fractures extend over a large range within the coal,thereby improving coalbed permeability.This study focuses on the criteria of cumulative blasting-induced coalbed fracturing based on a literature review of the penetration effect of cumulative blasting.On this basis,we summarize the coal fracturing zone,crack extension process,and the key technologies of charging and hole sealing for cumulative blasting.In addition,the latest research progress in the optimization of field test drilling and blasting parameters for cumulative blasting is introduced.Research findings indicate that the permeability improvement mechanism of cumulative blasting could be further enhanced,and the technology and technical equipment are in urgent need of improvement.Finally,development trends in the cumulative blasting permeability improvement technique are identified.
基金Project(50679017) supported by the National Natural Science Foundation of China
文摘The construction process and load-bearing behaviors of Cast-in-place concrete thin-wall pipe piles are analyzed based on its application on Yantong Expressway Project. The low strain test, static load test and field excavation were also carried out, and the bearing capacity of the new pile can meet the requirements of design. With the increase of pile diameter, the bearing capacity is increased. The settlement of composite foundation is decreased, when the replacement ratio of pile is increased. The test results also show that the load carried by inner soils is neglectable. According to the tests and application, it can be concluded that the new type of pile is convenient to construction with high bearing capacity and reliable quality, which has great potential in practical engineering.
基金Project(51405010)supported by the National Natural Science Foundation of ChinaProject(2011BAG09B00)supported by the National Science and Technology Support Program of China
文摘For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.
文摘To reveal the damage mechanism of high chrome bricks for opposed multi nozzle gasifier with expanded diameter,the chemical composition and the morphology of a used high chrome brick were researched using XRF,SEM and EDS,and the properties of the high chrome bricks were improved by adding ultra fine alumina,alumina-chrome-iron oxide synthetic material with spinel structure,and chromium metal.The results show that(1)the high chrome brick is seriously damaged by the chemical dissolution of chrome as well as the chemical reactions at the slag/brick interface,the slag penetration and the structural spalling;(2)FeO in the slag reacts with Cr_(2)O_(3)in the brick to form a FeCr_(2)O_(4)layer on the particle surface thus leading to spalling;CaO reacts with SiO_(2)and Al2O3 in the brick forming a metamorphic layer of low melting point materials;due to the different thermal expansion coefficients of the metamorphic layer and the original brick,cracks appear and continue to expand and deepen under multiple temperature and pressure fluctuations thus leading to spalling of brick layer;(3)the improved brick has decreased apparent porosity,increased bulk density and compressive strength,and better thermal shock resistance compared with the original brick;after one cycle of on-site application,the furnace lining surface is smooth and flat with little damage,indicating that the improved high chrome bricks basically meet the working condition requirements of the opposed multi nozzle gasifier with expanded diameter,however,the final effects need to be evaluated in detail after the whole furnace service.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB932302)the National Natural Science Foundation of China(Grant Nos.11634014,51172271,51372269,and 51472264)the“Strategic Priority Research Program”of the Chinese Academy of Sciences(Grant No.XDA09040202)
文摘Continuous CNT fibers have been directly fabricated in a speed of 50 m/h-400 m/h,based on an improved chemical vapor deposition method.As-prepared fibers are further post-treated by acid.According to the SEM images and Raman spectra,the acid treatment results in the compaction and surface modification of the CNTs in fibers,which are beneficial for the electron and load transfer.Compared to the HNO3 treatment,HClSO_3 or H_2SO_4 treatment is more effective for the improvement of the fibers' properties.After HCISO_3 treatment for 2 h,the fibers' strength and electrical conductivity reach up to-2 GPa and-4.3 MS/m,which are promoted by-200%and almost one order of magnitude than those without acid treatment,respectively.The load-bearing status of the CNT fibers are analyzed based on the downshifts of the G' band and the strain transfer factor of the fibers under tension.The results reveal that acid treatment could greatly enhance the load transfer and inter-bundle strength.With the HCISO3 treatment,the strain transfer factor is enhanced from-3.9%to-53.6%.
基金supported by the National Natural Science Foundation of China(No.52075407)Natural Science Foundation of Shaanxi Province of China(No.2019JM-034).
文摘The friction coefficient and wear rate of pretreated graphite with liquid nitrogen were obtained by using a ball-on-disk tester,and the wear of GCr15–graphite seal pairs with the low-temperature time-dependent pretreatment was discussed by comparing the wear morphology.The results show that liquid nitrogen pretreatment can affect the hardness and interlayer spacing of graphite.The range of the friction coefficients of pretreated graphite changes from 0.17 to 0.22.With the increase of liquid nitrogen pretreatment time,the wear mechanism of graphite would change from dominated three-body wear to adhesion wear.The experimental results of the mechanical seal with liquid nitrogen pretreatment show that the wear rate of stator is less than 0.00165 mm^(3)·N^(−1)·m^(−1),and the graphite shows a good low-temperature compatibility.
基金supported by the National Basic Research Program of China(Grant No.2009CB724304)the Key Research Program of the State Key Laboratory of Tribology of Tsinghua University(Grant No.SKLT08A06)the National Natural Science Foundation of China(Grant No.50975157)
文摘The studies on the mechanisms and performances of the mechanical seals in reactor coolant pumps are very important for the safe operations of the pressurized water reactor power plants. Based on the hydrostatic mechanical seal in reactor coolant pumps, an analytical fluid-solid strong-interaction model is proposed in this paper. According to the design features and operafional principles of the seal, an analytical method to calculate the mechanical deformation of the seal assembly is developed based on the ring deformation theory. A strong-interaction algorithm combining the analysis of the mechanical deformation of the seal assembly and flow field between the seal faceplates is utilized, in which the three kinds of equations including the fluid domain, solid domain and coupling action are constituted in the same equations set and all the variables are solved simul- taneously. So the analytical fluid-solid strong-interaction model used for the seal is built. Moreover, the model is verified by the experimental results. Based on the model, the design parameters of the seal are studied. Two different conditions of the general case and fixed seal leakage rate are discussed respectively, and the regularities that the seal behaviors are affected by the parameters of the holding screws on the clamp rings and seal faceplates are obtained. The research results can provide a theoretical basis for performance analysis, design and assemblage of the seal. Compared to the numerical methods, the proposed model has the unique advantages of high efficiency, convenience and easy application of constraints.
基金supported by the National Basic Research Program of China(Grant No.2009CB724304)the National Natural Science Foundation of China(Grant No.51275268)the National Science and Technology Support Plan(Grant No.2011BAF09B05)
文摘In this paper, the effect of surface roughness on sealing clearance, pressure distribution, friction torque and leakage is studied by the thermal-elasto-hydrodynamic mixed lubrication model. A convergent nominal clearance is formed by the pressure de- formation and thermal deformation of the seal faces. This causes more serious wear in the inner side than that of the outer side of the contact area. Mass leakage increases with the growing of the surface roughness. The temperature and thermal defor- mation on the seal surface increases substantially if the roughness is reduced. The contact mechanical seals have consistent performance when the standard deviation of surface roughness is approximately 0.2 pm. In order to validate the theoretical analysis model, a method combining the measurement of three-dimensioned profile and Raman spectrum is proposed.
基金supported by the National Natural Science Foundation of China(Nos.51875015,51620105010)。
文摘The reliability estimation of mechanical seals is of crucial importance due to their wide applications in pumps in various mechanical systems.Failure of mechanical seals might cause leakage,and might lead to system failure and other relevant consequences.In this study,the reliability estimation for mechanical seals based on bivariate dependence analysis and considering model uncertainty is proposed.The friction torque and leakage rate are two degradation performance indicators of mechanical seals that can be described by the Wiener process,Gamma process,and inverse Gaussian process.The dependence between the two indicators can be described by different copula functions.Then the model uncertainty is considered in the reliability estimation using the Bayesian Model Average(BMA)method,while the unknown parameters in the model are estimated by Bayesian Markov Chain Monte Carlo(MCMC)method.A numerical simulation study and fatigue crack study are conducted to demonstrate the effectiveness of the BMA method to capture model uncertainty.A degradation test of mechanical seals is conducted to verify the proposed model.The optimal stochastic process models for two performance indicators and copula function are determined based on the degradation data.The results show the necessity of using the BMA method in degradation modeling.