Fracturing of highly anisotropic rocks is a problem often encountered in the stimulation of unconventional hydrocarbon or geothermal reservoirs by hydraulic fracturing. Fracture propagation in isotropic material is we...Fracturing of highly anisotropic rocks is a problem often encountered in the stimulation of unconventional hydrocarbon or geothermal reservoirs by hydraulic fracturing. Fracture propagation in isotropic material is well understood but strictly isotropic rocks are rarely found in nature. This study aims at the examination of fracture initiation and propagation processes in a highly anisotropic rock, specifically slate. We performed a series of tensile fracturing laboratory experiments under uniaxial as well as triaxial loading. Cubic specimens with edge lengths of 150 mm and a central borehole with a diameter of13 mm were prepared from Fredeburg slate. An experiment using the rather isotropic Bebertal sandstone as a rather isotropic rock was also performed for comparison. Tensile fractures were generated using the sleeve fracturing technique, in which a polymer tube placed inside the borehole is pressurized to generate tensile fractures emanating from the borehole. In the uniaxial test series, the loading was varied in order to observe the transition from strength-dominated fracture propagation at low loading magnitudes to stress-dominated fracture propagation at high loading magnitudes.展开更多
基金funded by the German Federal Ministry for Economic Affairs(FKZ 0325279B)
文摘Fracturing of highly anisotropic rocks is a problem often encountered in the stimulation of unconventional hydrocarbon or geothermal reservoirs by hydraulic fracturing. Fracture propagation in isotropic material is well understood but strictly isotropic rocks are rarely found in nature. This study aims at the examination of fracture initiation and propagation processes in a highly anisotropic rock, specifically slate. We performed a series of tensile fracturing laboratory experiments under uniaxial as well as triaxial loading. Cubic specimens with edge lengths of 150 mm and a central borehole with a diameter of13 mm were prepared from Fredeburg slate. An experiment using the rather isotropic Bebertal sandstone as a rather isotropic rock was also performed for comparison. Tensile fractures were generated using the sleeve fracturing technique, in which a polymer tube placed inside the borehole is pressurized to generate tensile fractures emanating from the borehole. In the uniaxial test series, the loading was varied in order to observe the transition from strength-dominated fracture propagation at low loading magnitudes to stress-dominated fracture propagation at high loading magnitudes.