The effects of sphere size on the microstructural and mechanical properties of ductile iron–steel hollow sphere(DI–SHS) syntactic foams were investigated in this study. The SHSs were manufactured by fluidized-bed ...The effects of sphere size on the microstructural and mechanical properties of ductile iron–steel hollow sphere(DI–SHS) syntactic foams were investigated in this study. The SHSs were manufactured by fluidized-bed coating via the Fe-based commercial powder–binder suspension onto expanded polystyrene spheres(EPSs). Afterwards, the DI–SHS syntactic foams were produced via a sand-mold casting process. The microstructures of specimens were investigated by optical microscopy, scanning electron microscopy(SEM), and energy-dispersive X-ray spectroscopy(EDS). The microscopic evaluations of specimens reveal distinct regions composed of the DI matrix, SHS shells, and compatible interface. As a result, the microstructures and graphite morphologies of the DI matrix depend on sphere size. When the sphere size decreases, the area fractions of cementite and graphite phases are observed to increase and decrease, respectively. Compression tests were subsequently conducted at ambient temperature on the DI–SHS syntactic foams. The results reveal that the compression behavior of the syntactic foams is enhanced with increasing sphere size. Furthermore, the compressed specimens demonstrate that microcracks start and grow from the interface region.展开更多
The effects of annealing time and temperature on the retained austenite content and mechanical properties of 0.2C-7Mn steel were studied.The retained austenite content of 0.2C-7Mn steel was compared with that of 0.2C-...The effects of annealing time and temperature on the retained austenite content and mechanical properties of 0.2C-7Mn steel were studied.The retained austenite content of 0.2C-7Mn steel was compared with that of 0.2C-5Mn steel.It is found that 0.2C-7Mn steel exhibits a similar variation trend of retained austenite content as 0.2C-5Mn steel.However,in detail,these trends are different.0.2C-7Mn steel contains approximately 7.5vol%retained austenite after austenitization and quenching.The stability of the reversed austenite in 0.2C-7Mn steel is lower than that in 0.2C-5Mn steel;in contrast,the equilibrium reversed austenite fraction of 0.2C-7Mn steel is substantially greater than that of 0.2C-5Mn steel.Therefore,the retained austenite content in 0.2C-7Mn steel reaches 53.1vol%.The tensile results show that long annealing time and high annealing temperature may not favor the enhancement of mechanical properties of 0.2C-7Mn steel.The effect of retained austenite on the tensile strength of the steel depends on the content of retained austenite;in contrast,the 0.2%yield strength linearly decreases with increasing retained austenite content.展开更多
In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. A...In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. According to the results of scanning electron microscopy and transmission electron microscopy observations, X-ray diffraction analysis, and tensile tests, upper bainite or tempered martensite appears successively in the microstructure with increasing austenitization temperature or increasing partitioning time. In the partially austenitized specimens, the retained austenite grains are carbon-enriched twice during the heat treatment, which can significantly stabilize the phases at room temperature. Furthermore, after partial austenitization, the specimen exhibits excellent elongation, with a maximum elongation of 37.1%. By contrast, after full austenitization, the specimens exhibit good ultimate tensile strength and high yield strength. In the case of a specimen with a yield strength of 969 MPa, the maximum value of the ultimate tensile strength reaches 1222 MPa. During the partitioning process, carbon partitioning and carbon homogenization within austenite affect interface migration. In addition, the volume fraction and grain size of retained austenite observed in the final microstructure will also be affected.展开更多
Three different online heat treatment processes were designed to study the effects on the mechanical properties of a 0.19C-1.6Si-1.6Mn(wt%) hot rolled strip steel.The microstructures were characterized by means of S...Three different online heat treatment processes were designed to study the effects on the mechanical properties of a 0.19C-1.6Si-1.6Mn(wt%) hot rolled strip steel.The microstructures were characterized by means of SEM,TEM,EPMA,and XRD.The mechanical properties were estimated by tensile tests.Results showed that a satisfying combination of strength and ductility could be obtained through the ferrite relaxation and direct quenching and partitioning process.Analysis was also focused on this process.The microstructure contained proeutectoid ferrite grains,martensite packets and blocky or interlath retained austenite,and also contained carbide-free bainite in the case of relatively high quench temperatures.The retained austenite fraction was increased through proeutectoid ferrite and partial bainite transformation,while the tensile strength was also consequently decreased.The most of retained austenite transformed to ferrite under deformation and the elongation was obviously improved.展开更多
The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9 MolColNiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercr...The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9 MolColNiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercritical power plant.The results show that the main precipitates during aging are Fe(Cr,Mo)23C6,V(Nb)C,and(Fe2Mo) Laves in the steel.The amounts of the precipitated phases increase during aging,and correspondingly,the morphologies of phases are similar to be round.Fe(Cr,Mo)23C6 appears along boundaries and grows with increasing temperature.In addition,it is revealed that the martensitic laths are coarsened and eventually happen to be polygonization.The hardness and strength decrease gradually,whereas the plasticity of the steel increases.What's more,the hardness of this steel after creep is similar to that of other 9%-12%Cr ferritic steels.Thus,ZG12Cr9 MolColNiVNbNB can be used in the project.展开更多
Cu, as an austenitic stable element, is added to steel in order to suppress the adverse effects of high content of C and Mn on welding. Based on C partitioning, Cu and Mn partitioning can further improve the stability...Cu, as an austenitic stable element, is added to steel in order to suppress the adverse effects of high content of C and Mn on welding. Based on C partitioning, Cu and Mn partitioning can further improve the stability of retained austenite in the intercritical annealing process. A sample of low carbon steel containing Cu was treated by the intercritical annealing, then quenching process(I&Q). Subsequently, another sample was treated by the intercritical annealing, subsequent austenitizing, then quenching and partitioning process(I&Q&P). The effects of element partitioning behavior in intercritical region on the microstructure and mechanical properties of the steel were studied. The results showed that after the I&Q process ferrite and martensite could be obtained, with C, Cu and Mn enriched in the martensite. When intercritically heated at 800 ℃, Cu and Mn were partitioned from ferrite to austenite, which was enhanced gradually as the heating time was increased. This partitioning effect was the most obvious when the sample was heated at 800 ℃ for 40 min. At the early stage of α→γ transformation, the formation of γ was controlled by the partitioning of carbon, while at the later stage, it was mainly affected by the partitioning of Cu and Mn. After the I&Q&P process, the partitioning effect of Cu and Mn element could be retained. C was assembled in retained austenite during the quenching and partitioning process. The strength and elongation of I&Q&P steel was increased by 5 305 MPa% compared with that subjected to Q&P process. The volume fraction of retained autensite was increased from 8.5% to 11.2%. Hence, the content of retained austenite could be improved significantly by Mn and Cu partitioning, which increased the elongation of steel.展开更多
The influence of soaking time in deep cryogenic treatment on the tensile and impact properties of low-alloy medium-carbon HY-TUF steel was investigated in this study. Microstructural studies based on phase distributio...The influence of soaking time in deep cryogenic treatment on the tensile and impact properties of low-alloy medium-carbon HY-TUF steel was investigated in this study. Microstructural studies based on phase distribution mapping by electron backscatter diffraction show that the deep cryogenic process causes a decrease in the content of retained austenite and an increase in the volume fraction of η-carbide with increasing soaking time up to 48 h. The decrease in the content of retained austenite from ~1.23vol% to 0.48vol% suggests an isothermal martensitic transformation at 77 K. The η-type precipitates formed in deep cryogenic-treated martensite over 48 h have the Hirotsu and Nagakura orientation relation with the martensitic matrix. Furthermore, a high coherency between η-carbide and the martensitic matrix is observed by high-resolution transmission electron microscopy. The variations in macrohardness, yield strength, ultimate tensile strength, and ductility with soaking time in the deep cryogenic process show a peak/plateau trend.展开更多
The influence of Ti and Nb on the microstructure,mechanical properties,and second-phase precipitation of 430 ferritic stainless steel was investigated.In addition to optical microscopy,transmission electron microscopy...The influence of Ti and Nb on the microstructure,mechanical properties,and second-phase precipitation of 430 ferritic stainless steel was investigated.In addition to optical microscopy,transmission electron microscopy and X-ray diffraction analyses,tensile tests,and carbonitride extraction experiments were conducted to investigate the microscopic mechanisms.The results showed that the primary precipitates in SUS 430 ferritic stainless steel were Cr_(23)C_6,Mn_(23)C_6,and Cr_7C_3,and the primary strengthening mechanism was precipitation strengthening.When Ti was added separately,the main precipitates were TiC and TiN.However,coarse TiC adversely affected the mechanical properties of steel.When double-stabilized with Ti and Nb,coarse TiC was replaced by fine NbC.The type of precipitation was altered,and precipitation and solid solution strengthening occurred.Therefore,the tensile strength and plastic strain ratio(r-value) improved to 433.60 MPa and 1.37,respectively.展开更多
The mechanical properties and microstructure evolution of cold-deformed CrMnN austenitic stainless steel annealed in a temperature ranging from 50 ℃ to 650 ℃ for 90 min and at 550 ℃ for different time were investig...The mechanical properties and microstructure evolution of cold-deformed CrMnN austenitic stainless steel annealed in a temperature ranging from 50 ℃ to 650 ℃ for 90 min and at 550 ℃ for different time were investigated by tensile test, micro hardness test, and Transmission Electron Microscope (TEM). The steel was strengthened when it got annealed at temperatures ranging from 100 ℃ to 550 ℃, while it was softened when it got annealed at temperatures ranging from 550 ℃ to 650 ℃. Annealing temperature had stronger effect on mechanical properties than annealing time. TEM observations showed that nano-sized precipitates formed when the steel was annealed at 150 ℃ for 90 min, but the size and density of precipitates had no noticeable change with annealing temperature and time. Recrystallization occurred when the steel was annealed at temperatures above 550 ℃ for 90 min, and its scale increased with annealing temperature. Nano-sized annealing twins were observed. The mechanisms that controlled the mechanical behaviors of the steel were discussed.展开更多
Starting from the corrosion mechanism,this paper analyzes the characteristics of various types of stainless steel and selects the best performance composite plate composite plate stainless steel.Analyze and select the...Starting from the corrosion mechanism,this paper analyzes the characteristics of various types of stainless steel and selects the best performance composite plate composite plate stainless steel.Analyze and select the most suitable corrosion detection method based on specific practical multi working conditions,discuss the interference factors that affect metal corrosion during experimental simulation,and the advantages of newly developed sheet metal.The new development of composite board panels,with the substrate and composite materials applying their respective capabilities for MED,will bring breakthrough progress to the scientific research and engineering applica-tion of composite boards.展开更多
The characteristics and generation mechanism of(Ti,Nb,V)(C,N) precipitates larger than 2 μm in Nb-containing H13 bar steel were studied. The results show that two types of(Ti,Nb,V)(C,N) phases exist—a Ti-V-r...The characteristics and generation mechanism of(Ti,Nb,V)(C,N) precipitates larger than 2 μm in Nb-containing H13 bar steel were studied. The results show that two types of(Ti,Nb,V)(C,N) phases exist—a Ti-V-rich one and an Nb-rich one—in the form of single or complex precipitates. The sizes of the single Ti-V-rich(Ti,Nb,V)(C,N) precipitates are mostly within 5 to 10 μm, whereas the sizes of the single Nb-rich precipitates are mostly 2–5 μm. The complex precipitates are larger and contain an inner Ti-V-rich layer and an outer Nb-rich layer. The compositional distribution of(Ti,Nb,V)(C,N) is concentrated. The average composition of the single Ti-V-rich phase is(Ti_(0.511)V_(0.356)Nb_(0.133))(CxNy), whereas that for the single Nb-rich phase is(Ti_(0.061)V_(0.263)Nb_(0.676))(C_xN_y). The calculation results based on the Scheil–Gulliver model in the Thermo-Calc software combining with the thermal stability experiments show that the large phases precipitate during the solidification process. With the development of solidification, the Ti-V-rich phase precipitates first and becomes homogeneous during the subsequent temperature reduction and heat treatment processes. The Nb-rich phase appears later.展开更多
AISI 304 stainless steel plates were welded with activated flux tungsten inert gas(A-TIG) method by utilizing self-developed activated flux. It is indicated from the experimental results that for 8 mm-thick AISI 304 s...AISI 304 stainless steel plates were welded with activated flux tungsten inert gas(A-TIG) method by utilizing self-developed activated flux. It is indicated from the experimental results that for 8 mm-thick AISI 304 stainless steel plate, weld joint of full penetration and one-side welding with good weld appearance can be obtained in a single pass without groove preparation by utilizing A-TIG welding. Moreover, activated flux powders do not cause significant effect on the microstructure of TIG weld and the mechanical properties of A-TIG weld joints are also superior to those of C-TIG(conventional TIG) welding.展开更多
C–Mn steels prepared by annealing at 800°C for 120 s and overaging at 250–400°C were subjected to pre-straining(2%) and baking treatments(170°C for 20 min) to measure their bake-hardening(BH_2) ...C–Mn steels prepared by annealing at 800°C for 120 s and overaging at 250–400°C were subjected to pre-straining(2%) and baking treatments(170°C for 20 min) to measure their bake-hardening(BH_2) values. The effects of overaging temperature on the microstructure, mechanical properties, and BH_2 behavior of 600 MPa cold-rolled dual-phase(DP) steel were investigated by optical microscopy, scanning electron microscopy, and tensile tests. The results indicated that the martensite morphology exhibited less variation when the DP steel was overaged at 250–350°C. However, when the DP steel was overaged at 400°C, numerous non-martensite and carbide particles formed and yield-point elongation was observed in the tensile curve. When the overaging temperature was increased from 250 to 400°C, the yield strength increased from 272 to 317 MPa, the tensile strength decreased from 643 to 574 MPa, and the elongation increased from 27.8% to 30.6%. Furthermore, with an increase in overaging temperature from 250 to 400°C, the BH_2 value initially increases and then decreases. The maximum BH_2 value of 83 MPa was observed for the specimen overaged at 350°C.展开更多
The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200°C·s^-1. The formation mechanisms of three t...The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200°C·s^-1. The formation mechanisms of three types of MnS were elucidated based on phase diagram information combined with crystal growth models. The morphology of MnS is governed by the precipitation mode and the growth conditions. A monotectic reaction and subsequent fast solidification lead to globular Type I MnS. Type II MnS inclusions with different morphological characteristics form as a result of a eutectic reaction followed by the growth in the Fe matrix. Type III MnS presents a divorced eutectic morphology. At the cooling rate of 0.24°C·s^-1, the precipitation of dispersed Type III MnS is significantly enhanced by the addition of 0.044wt% acid-soluble Al(Als), while Type II MnS clusters prefer to form in steels with either 0.034wt% or 0.052wt% Als. At the relatively higher cooling rates of 200°C·s^-1 and 0.43°C·s^-1, the formation of Type I and Type II MnS inclusions is promoted, and the influence of Al is negligible. The results of this work are expected to be employed in practice to improve the mechanical properties of non-quenched and tempered steels.展开更多
A new approach named as steel pile method is innovatively proposed in this study to control severe floor heaves in gob-side entry retaining. It is required that the steel piles be installed in the floor corners with a...A new approach named as steel pile method is innovatively proposed in this study to control severe floor heaves in gob-side entry retaining. It is required that the steel piles be installed in the floor corners with a certain interval before the influence of the dynamic pressure induced by current panel extraction. Using numerical simulation and theoretical analysis, this study investigated the interaction between the steel piles and the floor rocks during the service life of the steel piles, and revealed the mechanism of the steel piles in controlling floor heaves. The effect of the steel pile parameters on the control of floor heaves was presented and elaborated. It is found that the effectiveness of the steel piles in controlling floor heaves can be enhanced with greater installed dip angle, longer length and smaller interval of the steel piles.Compared with traditional methods, e.g., using floor anchor bolts and floor restoration, the advantages using steel pile were successfully defined in terms of controlling effect and economic benefits. It is hoped that the proposed method can contribute to the development of gob-side entry retaining technique.展开更多
A discrete dislocation plasticity analysis of dispersion strengthening in oxide dispersion strengthened(ODS) steels was described. Parametric dislocation dynamics(PDD) simulation of the interaction between an edge dis...A discrete dislocation plasticity analysis of dispersion strengthening in oxide dispersion strengthened(ODS) steels was described. Parametric dislocation dynamics(PDD) simulation of the interaction between an edge dislocation and randomly distributed spherical dispersoids(Y2O3) in bcc iron was performed for measuring the influence of the dispersoid distribution on the critical resolved shear stress(CRSS). The dispersoid distribution was made using a method mimicking the Ostwald growth mechanism. Then, an edge dislocation was introduced, and was moved under a constant shear stress condition. The CRSS was extracted from the result of dislocation velocity under constant shear stress using the mobility(linear) relationship between the shear stress and the dislocation velocity. The results suggest that the dispersoid distribution gives a significant influence to the CRSS, and the influence of dislocation dipole, which forms just before finishing up the Orowan looping mechanism, is substantial in determining the CRSS, especially for the interaction with small dispersoids. Therefore, the well-known Orowan equation for determining the CRSS cannot give an accurate estimation, because the influence of the dislocation dipole in the process of the Orowan looping mechanism is not accounted for in the equation.展开更多
In order to investigate the carbide dissolution mechanism of high carbon-chromium bearing steel during the intercritical austenitization, the database of TCFE7 of Thermo-calc and MOBFE of DICTRA software were used to ...In order to investigate the carbide dissolution mechanism of high carbon-chromium bearing steel during the intercritical austenitization, the database of TCFE7 of Thermo-calc and MOBFE of DICTRA software were used to calculate the elements diffusion kinetic and the evolution law of volume fraction of carbide. DIL805 A dilatometer was used to simulate the intercritical heat treatment. The microstructure was observed by scanning electron microscopy(SEM), and the micro-hardness was tested. The experimental results indicate that the dissolution of carbide is composed of two stages: initial austenite growth governed by carbon diffusion which sharply moves up the micro-hardness of quenched martensite, and subsequent growth controlled by diffusion of Cr elements in M3 C. The volume fraction of M3 C decreases with the increasing holding time, and the metallographic analysis shows a great agreement with values calculated by software.展开更多
The corrosion failure mechanism of M152 was studied using the neutral salt-spray test to better understand the corrosion behavior of 1Cr12Ni3Mo2VN(M152), provide a basis for the optimization of material selection, a...The corrosion failure mechanism of M152 was studied using the neutral salt-spray test to better understand the corrosion behavior of 1Cr12Ni3Mo2VN(M152), provide a basis for the optimization of material selection, and prevent the occurrence of failure. Moreover, the mechanism was investigated using the mass loss method, polarization curves, electrochemical impedance spectroscopy(EIS), stereology microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy(EDS). The results show that M152 steel suffers severe corrosion, especially pitting corrosion, in a high-salt-spray environment. In the early stage of the experiment, the color of the corrosion products was mainly orange. The products then gradually evolved into a dense, brown substance, which coincided with a decrease of corrosion rate. Correspondingly, the EIS spectrum of M152 in the late test also exhibited three time constants and presented Warburg impedance at low frequencies.展开更多
Martensitic stainless steel containing Cr of 12% to 18%(mass percent) are common utilized in quenching and tempering processes for knife and cutlery steel. The properties obtained in these materials are significantl...Martensitic stainless steel containing Cr of 12% to 18%(mass percent) are common utilized in quenching and tempering processes for knife and cutlery steel. The properties obtained in these materials are significantly influ- enced by matrix composition after heat treatment, especially as Cr and C content. Comprehensive considered the hardness and corrosion resistance, a new type martensitic stainless steel 6Crl5MoV has been developed. The effect of heat treatment processes on microstructure and mechanical properties of 6Crl5MoV martensitic stainless steel is emphatically researched. Thermo-Calc software has been carried out to thermodynamic calculation; OM, SEM and TEM have been carried out to microstructure observation; hardness and impact toughness test have been carried out to evaluate the mechanical properties. Results show that the equilibrium carbide in 6Cr15MoV steel is M23 C6 car- bide, and the M23 C6 carbides finely distributed in annealed microstructure. 6Crl5MoV martensitic stainless steel has a wider quenching temperature range, the hardness value of steel 6Cr15MoV can reach to HRC 60.8 to HRC 61.6 when quenched at 1 060 to 1 100 ℃. Finely distributed carbides will exist in quenched microstructure, and effectively inhabit the growth of austenite grain. With the increasing of quenching temperature, the volume fraction of undis- solved carbides will decrease. The excellent comprehensive mechanical properties can be obtained by quenched at 1 060 to 1 100℃ with tempered at 100 to 150 ℃, and it is mainly due to the high carbon martensite and fine grain size. At these temperature ranges, the hardness will retain about HRC 59.2 to HRC 61.6 and the Charpy U-notch impact toughness will retain about 17.3 to 20 J. A lot of M23C6 carbides precipitated from martensite matrix, at the same time along the boundaries of martensite lathes which leading to the decrease of impact toughness when tempered at 500 to 540 ℃. The MaC precipitants also existed in the martensite matrix of test steel after tempered at 500 ℃, and the mean size of M3 C precipitates is bigger than that of M23 C6 precipitates.展开更多
Mechanical properties of a newly developed microalloyed bainitic steel were investigated after the hot forging, air cooling and tempering process. The microstructure of the as forged bainitic steel mainly consists of ...Mechanical properties of a newly developed microalloyed bainitic steel were investigated after the hot forging, air cooling and tempering process. The microstructure of the as forged bainitic steel mainly consists of granular bainite and -20 vol. % martensite. The fraction of retained austenite remains unchanged until tempering at 200 ℃, above which it decreases significantly. The increase of tempering temperature leads to decreases of both ultimate tensile strength and total elongation but decreases of both yield strength and reduction of area. The maximum and mini- mum values of impact toughness were observed after tempering at around 200 and 400 ℃, respectively. These effects are mainly attributed to the decomposition of martensite/austenite con stituents and the tempering effects in martensite. The tempering of the forged bainitic steel at around 200 ℃ results in an excellent combination of strength and toughness, which is comparable to that of the conventional quenched and-tempered 40Cr steel. Therefore, low-tempering treatment coupled with post-forging residual stress relieving is a feasible method to further improve the mechanical prooerties of the bainitic foging steel.展开更多
文摘The effects of sphere size on the microstructural and mechanical properties of ductile iron–steel hollow sphere(DI–SHS) syntactic foams were investigated in this study. The SHSs were manufactured by fluidized-bed coating via the Fe-based commercial powder–binder suspension onto expanded polystyrene spheres(EPSs). Afterwards, the DI–SHS syntactic foams were produced via a sand-mold casting process. The microstructures of specimens were investigated by optical microscopy, scanning electron microscopy(SEM), and energy-dispersive X-ray spectroscopy(EDS). The microscopic evaluations of specimens reveal distinct regions composed of the DI matrix, SHS shells, and compatible interface. As a result, the microstructures and graphite morphologies of the DI matrix depend on sphere size. When the sphere size decreases, the area fractions of cementite and graphite phases are observed to increase and decrease, respectively. Compression tests were subsequently conducted at ambient temperature on the DI–SHS syntactic foams. The results reveal that the compression behavior of the syntactic foams is enhanced with increasing sphere size. Furthermore, the compressed specimens demonstrate that microcracks start and grow from the interface region.
基金supported by the National Natural Science Foundation of China (Nos. 51371057 and 51471094)the Major State Basic Research Development Program of China (No.2010CB630803)
文摘The effects of annealing time and temperature on the retained austenite content and mechanical properties of 0.2C-7Mn steel were studied.The retained austenite content of 0.2C-7Mn steel was compared with that of 0.2C-5Mn steel.It is found that 0.2C-7Mn steel exhibits a similar variation trend of retained austenite content as 0.2C-5Mn steel.However,in detail,these trends are different.0.2C-7Mn steel contains approximately 7.5vol%retained austenite after austenitization and quenching.The stability of the reversed austenite in 0.2C-7Mn steel is lower than that in 0.2C-5Mn steel;in contrast,the equilibrium reversed austenite fraction of 0.2C-7Mn steel is substantially greater than that of 0.2C-5Mn steel.Therefore,the retained austenite content in 0.2C-7Mn steel reaches 53.1vol%.The tensile results show that long annealing time and high annealing temperature may not favor the enhancement of mechanical properties of 0.2C-7Mn steel.The effect of retained austenite on the tensile strength of the steel depends on the content of retained austenite;in contrast,the 0.2%yield strength linearly decreases with increasing retained austenite content.
基金funded by China Scholarship Council (No. 201406460053)
文摘In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. According to the results of scanning electron microscopy and transmission electron microscopy observations, X-ray diffraction analysis, and tensile tests, upper bainite or tempered martensite appears successively in the microstructure with increasing austenitization temperature or increasing partitioning time. In the partially austenitized specimens, the retained austenite grains are carbon-enriched twice during the heat treatment, which can significantly stabilize the phases at room temperature. Furthermore, after partial austenitization, the specimen exhibits excellent elongation, with a maximum elongation of 37.1%. By contrast, after full austenitization, the specimens exhibit good ultimate tensile strength and high yield strength. In the case of a specimen with a yield strength of 969 MPa, the maximum value of the ultimate tensile strength reaches 1222 MPa. During the partitioning process, carbon partitioning and carbon homogenization within austenite affect interface migration. In addition, the volume fraction and grain size of retained austenite observed in the final microstructure will also be affected.
基金Funded by the National Basic Research Program of China(No.51504063)the Natural Science Foundation of Liaoning Province of China(No.2014020027)the Fundamental Research Funds for the Central Universities(No.N130407001)
文摘Three different online heat treatment processes were designed to study the effects on the mechanical properties of a 0.19C-1.6Si-1.6Mn(wt%) hot rolled strip steel.The microstructures were characterized by means of SEM,TEM,EPMA,and XRD.The mechanical properties were estimated by tensile tests.Results showed that a satisfying combination of strength and ductility could be obtained through the ferrite relaxation and direct quenching and partitioning process.Analysis was also focused on this process.The microstructure contained proeutectoid ferrite grains,martensite packets and blocky or interlath retained austenite,and also contained carbide-free bainite in the case of relatively high quench temperatures.The retained austenite fraction was increased through proeutectoid ferrite and partial bainite transformation,while the tensile strength was also consequently decreased.The most of retained austenite transformed to ferrite under deformation and the elongation was obviously improved.
基金supported by the Science and Technology Program of Sichuan Province,China(No.2013GZX0146)
文摘The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9 MolColNiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercritical power plant.The results show that the main precipitates during aging are Fe(Cr,Mo)23C6,V(Nb)C,and(Fe2Mo) Laves in the steel.The amounts of the precipitated phases increase during aging,and correspondingly,the morphologies of phases are similar to be round.Fe(Cr,Mo)23C6 appears along boundaries and grows with increasing temperature.In addition,it is revealed that the martensitic laths are coarsened and eventually happen to be polygonization.The hardness and strength decrease gradually,whereas the plasticity of the steel increases.What's more,the hardness of this steel after creep is similar to that of other 9%-12%Cr ferritic steels.Thus,ZG12Cr9 MolColNiVNbNB can be used in the project.
基金Funded by National Natural Science Foundation of China(Nos.51574107,51304186)Natural Science Foundation of Hebei Province(Nos.E2016209048,E2017209048)Tangshan High Performance Metal and Composite Materials Science and Technical Innovation Team(No.15130202C)
文摘Cu, as an austenitic stable element, is added to steel in order to suppress the adverse effects of high content of C and Mn on welding. Based on C partitioning, Cu and Mn partitioning can further improve the stability of retained austenite in the intercritical annealing process. A sample of low carbon steel containing Cu was treated by the intercritical annealing, then quenching process(I&Q). Subsequently, another sample was treated by the intercritical annealing, subsequent austenitizing, then quenching and partitioning process(I&Q&P). The effects of element partitioning behavior in intercritical region on the microstructure and mechanical properties of the steel were studied. The results showed that after the I&Q process ferrite and martensite could be obtained, with C, Cu and Mn enriched in the martensite. When intercritically heated at 800 ℃, Cu and Mn were partitioned from ferrite to austenite, which was enhanced gradually as the heating time was increased. This partitioning effect was the most obvious when the sample was heated at 800 ℃ for 40 min. At the early stage of α→γ transformation, the formation of γ was controlled by the partitioning of carbon, while at the later stage, it was mainly affected by the partitioning of Cu and Mn. After the I&Q&P process, the partitioning effect of Cu and Mn element could be retained. C was assembled in retained austenite during the quenching and partitioning process. The strength and elongation of I&Q&P steel was increased by 5 305 MPa% compared with that subjected to Q&P process. The volume fraction of retained autensite was increased from 8.5% to 11.2%. Hence, the content of retained austenite could be improved significantly by Mn and Cu partitioning, which increased the elongation of steel.
文摘The influence of soaking time in deep cryogenic treatment on the tensile and impact properties of low-alloy medium-carbon HY-TUF steel was investigated in this study. Microstructural studies based on phase distribution mapping by electron backscatter diffraction show that the deep cryogenic process causes a decrease in the content of retained austenite and an increase in the volume fraction of η-carbide with increasing soaking time up to 48 h. The decrease in the content of retained austenite from ~1.23vol% to 0.48vol% suggests an isothermal martensitic transformation at 77 K. The η-type precipitates formed in deep cryogenic-treated martensite over 48 h have the Hirotsu and Nagakura orientation relation with the martensitic matrix. Furthermore, a high coherency between η-carbide and the martensitic matrix is observed by high-resolution transmission electron microscopy. The variations in macrohardness, yield strength, ultimate tensile strength, and ductility with soaking time in the deep cryogenic process show a peak/plateau trend.
文摘The influence of Ti and Nb on the microstructure,mechanical properties,and second-phase precipitation of 430 ferritic stainless steel was investigated.In addition to optical microscopy,transmission electron microscopy and X-ray diffraction analyses,tensile tests,and carbonitride extraction experiments were conducted to investigate the microscopic mechanisms.The results showed that the primary precipitates in SUS 430 ferritic stainless steel were Cr_(23)C_6,Mn_(23)C_6,and Cr_7C_3,and the primary strengthening mechanism was precipitation strengthening.When Ti was added separately,the main precipitates were TiC and TiN.However,coarse TiC adversely affected the mechanical properties of steel.When double-stabilized with Ti and Nb,coarse TiC was replaced by fine NbC.The type of precipitation was altered,and precipitation and solid solution strengthening occurred.Therefore,the tensile strength and plastic strain ratio(r-value) improved to 433.60 MPa and 1.37,respectively.
基金Funded by of Liaoning Science and Technology Bureau(No.2007221007)
文摘The mechanical properties and microstructure evolution of cold-deformed CrMnN austenitic stainless steel annealed in a temperature ranging from 50 ℃ to 650 ℃ for 90 min and at 550 ℃ for different time were investigated by tensile test, micro hardness test, and Transmission Electron Microscope (TEM). The steel was strengthened when it got annealed at temperatures ranging from 100 ℃ to 550 ℃, while it was softened when it got annealed at temperatures ranging from 550 ℃ to 650 ℃. Annealing temperature had stronger effect on mechanical properties than annealing time. TEM observations showed that nano-sized precipitates formed when the steel was annealed at 150 ℃ for 90 min, but the size and density of precipitates had no noticeable change with annealing temperature and time. Recrystallization occurred when the steel was annealed at temperatures above 550 ℃ for 90 min, and its scale increased with annealing temperature. Nano-sized annealing twins were observed. The mechanisms that controlled the mechanical behaviors of the steel were discussed.
文摘Starting from the corrosion mechanism,this paper analyzes the characteristics of various types of stainless steel and selects the best performance composite plate composite plate stainless steel.Analyze and select the most suitable corrosion detection method based on specific practical multi working conditions,discuss the interference factors that affect metal corrosion during experimental simulation,and the advantages of newly developed sheet metal.The new development of composite board panels,with the substrate and composite materials applying their respective capabilities for MED,will bring breakthrough progress to the scientific research and engineering applica-tion of composite boards.
文摘The characteristics and generation mechanism of(Ti,Nb,V)(C,N) precipitates larger than 2 μm in Nb-containing H13 bar steel were studied. The results show that two types of(Ti,Nb,V)(C,N) phases exist—a Ti-V-rich one and an Nb-rich one—in the form of single or complex precipitates. The sizes of the single Ti-V-rich(Ti,Nb,V)(C,N) precipitates are mostly within 5 to 10 μm, whereas the sizes of the single Nb-rich precipitates are mostly 2–5 μm. The complex precipitates are larger and contain an inner Ti-V-rich layer and an outer Nb-rich layer. The compositional distribution of(Ti,Nb,V)(C,N) is concentrated. The average composition of the single Ti-V-rich phase is(Ti_(0.511)V_(0.356)Nb_(0.133))(CxNy), whereas that for the single Nb-rich phase is(Ti_(0.061)V_(0.263)Nb_(0.676))(C_xN_y). The calculation results based on the Scheil–Gulliver model in the Thermo-Calc software combining with the thermal stability experiments show that the large phases precipitate during the solidification process. With the development of solidification, the Ti-V-rich phase precipitates first and becomes homogeneous during the subsequent temperature reduction and heat treatment processes. The Nb-rich phase appears later.
基金Project(2011DFB70130) supported by International Scientific and Technological Cooperation of Ministry of Science and Technology of ChinaProject(2012B050100015) supported by Science and Technology Planning Program of Guangdong Province,China
文摘AISI 304 stainless steel plates were welded with activated flux tungsten inert gas(A-TIG) method by utilizing self-developed activated flux. It is indicated from the experimental results that for 8 mm-thick AISI 304 stainless steel plate, weld joint of full penetration and one-side welding with good weld appearance can be obtained in a single pass without groove preparation by utilizing A-TIG welding. Moreover, activated flux powders do not cause significant effect on the microstructure of TIG weld and the mechanical properties of A-TIG weld joints are also superior to those of C-TIG(conventional TIG) welding.
基金financially supported by the National Natural Science Foundation of China(Nos.U1360202,51472030,and 51502014)
文摘C–Mn steels prepared by annealing at 800°C for 120 s and overaging at 250–400°C were subjected to pre-straining(2%) and baking treatments(170°C for 20 min) to measure their bake-hardening(BH_2) values. The effects of overaging temperature on the microstructure, mechanical properties, and BH_2 behavior of 600 MPa cold-rolled dual-phase(DP) steel were investigated by optical microscopy, scanning electron microscopy, and tensile tests. The results indicated that the martensite morphology exhibited less variation when the DP steel was overaged at 250–350°C. However, when the DP steel was overaged at 400°C, numerous non-martensite and carbide particles formed and yield-point elongation was observed in the tensile curve. When the overaging temperature was increased from 250 to 400°C, the yield strength increased from 272 to 317 MPa, the tensile strength decreased from 643 to 574 MPa, and the elongation increased from 27.8% to 30.6%. Furthermore, with an increase in overaging temperature from 250 to 400°C, the BH_2 value initially increases and then decreases. The maximum BH_2 value of 83 MPa was observed for the specimen overaged at 350°C.
基金financially supported by the National Natural Science Foundation of China (Nos. 51174020 and 51374018)the National High-Tech Research and Development Program of China (No. 2013AA031601)
文摘The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200°C·s^-1. The formation mechanisms of three types of MnS were elucidated based on phase diagram information combined with crystal growth models. The morphology of MnS is governed by the precipitation mode and the growth conditions. A monotectic reaction and subsequent fast solidification lead to globular Type I MnS. Type II MnS inclusions with different morphological characteristics form as a result of a eutectic reaction followed by the growth in the Fe matrix. Type III MnS presents a divorced eutectic morphology. At the cooling rate of 0.24°C·s^-1, the precipitation of dispersed Type III MnS is significantly enhanced by the addition of 0.044wt% acid-soluble Al(Als), while Type II MnS clusters prefer to form in steels with either 0.034wt% or 0.052wt% Als. At the relatively higher cooling rates of 200°C·s^-1 and 0.43°C·s^-1, the formation of Type I and Type II MnS inclusions is promoted, and the influence of Al is negligible. The results of this work are expected to be employed in practice to improve the mechanical properties of non-quenched and tempered steels.
基金Financial supports for this work,provided by the National Natural Science Foundation of China(Nos.511204167 and 51574227)Chinese National Programs for Fundamental Research and Development(No.2013CB227905),are gratefully acknowledged
文摘A new approach named as steel pile method is innovatively proposed in this study to control severe floor heaves in gob-side entry retaining. It is required that the steel piles be installed in the floor corners with a certain interval before the influence of the dynamic pressure induced by current panel extraction. Using numerical simulation and theoretical analysis, this study investigated the interaction between the steel piles and the floor rocks during the service life of the steel piles, and revealed the mechanism of the steel piles in controlling floor heaves. The effect of the steel pile parameters on the control of floor heaves was presented and elaborated. It is found that the effectiveness of the steel piles in controlling floor heaves can be enhanced with greater installed dip angle, longer length and smaller interval of the steel piles.Compared with traditional methods, e.g., using floor anchor bolts and floor restoration, the advantages using steel pile were successfully defined in terms of controlling effect and economic benefits. It is hoped that the proposed method can contribute to the development of gob-side entry retaining technique.
文摘A discrete dislocation plasticity analysis of dispersion strengthening in oxide dispersion strengthened(ODS) steels was described. Parametric dislocation dynamics(PDD) simulation of the interaction between an edge dislocation and randomly distributed spherical dispersoids(Y2O3) in bcc iron was performed for measuring the influence of the dispersoid distribution on the critical resolved shear stress(CRSS). The dispersoid distribution was made using a method mimicking the Ostwald growth mechanism. Then, an edge dislocation was introduced, and was moved under a constant shear stress condition. The CRSS was extracted from the result of dislocation velocity under constant shear stress using the mobility(linear) relationship between the shear stress and the dislocation velocity. The results suggest that the dispersoid distribution gives a significant influence to the CRSS, and the influence of dislocation dipole, which forms just before finishing up the Orowan looping mechanism, is substantial in determining the CRSS, especially for the interaction with small dispersoids. Therefore, the well-known Orowan equation for determining the CRSS cannot give an accurate estimation, because the influence of the dislocation dipole in the process of the Orowan looping mechanism is not accounted for in the equation.
基金Funded by the National High-tech Research and Development Program of China(863 Program)
文摘In order to investigate the carbide dissolution mechanism of high carbon-chromium bearing steel during the intercritical austenitization, the database of TCFE7 of Thermo-calc and MOBFE of DICTRA software were used to calculate the elements diffusion kinetic and the evolution law of volume fraction of carbide. DIL805 A dilatometer was used to simulate the intercritical heat treatment. The microstructure was observed by scanning electron microscopy(SEM), and the micro-hardness was tested. The experimental results indicate that the dissolution of carbide is composed of two stages: initial austenite growth governed by carbon diffusion which sharply moves up the micro-hardness of quenched martensite, and subsequent growth controlled by diffusion of Cr elements in M3 C. The volume fraction of M3 C decreases with the increasing holding time, and the metallographic analysis shows a great agreement with values calculated by software.
基金financially supported by the Major State Basic Research Development Program of China (No. 2014CB643300)
文摘The corrosion failure mechanism of M152 was studied using the neutral salt-spray test to better understand the corrosion behavior of 1Cr12Ni3Mo2VN(M152), provide a basis for the optimization of material selection, and prevent the occurrence of failure. Moreover, the mechanism was investigated using the mass loss method, polarization curves, electrochemical impedance spectroscopy(EIS), stereology microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy(EDS). The results show that M152 steel suffers severe corrosion, especially pitting corrosion, in a high-salt-spray environment. In the early stage of the experiment, the color of the corrosion products was mainly orange. The products then gradually evolved into a dense, brown substance, which coincided with a decrease of corrosion rate. Correspondingly, the EIS spectrum of M152 in the late test also exhibited three time constants and presented Warburg impedance at low frequencies.
文摘Martensitic stainless steel containing Cr of 12% to 18%(mass percent) are common utilized in quenching and tempering processes for knife and cutlery steel. The properties obtained in these materials are significantly influ- enced by matrix composition after heat treatment, especially as Cr and C content. Comprehensive considered the hardness and corrosion resistance, a new type martensitic stainless steel 6Crl5MoV has been developed. The effect of heat treatment processes on microstructure and mechanical properties of 6Crl5MoV martensitic stainless steel is emphatically researched. Thermo-Calc software has been carried out to thermodynamic calculation; OM, SEM and TEM have been carried out to microstructure observation; hardness and impact toughness test have been carried out to evaluate the mechanical properties. Results show that the equilibrium carbide in 6Cr15MoV steel is M23 C6 car- bide, and the M23 C6 carbides finely distributed in annealed microstructure. 6Crl5MoV martensitic stainless steel has a wider quenching temperature range, the hardness value of steel 6Cr15MoV can reach to HRC 60.8 to HRC 61.6 when quenched at 1 060 to 1 100 ℃. Finely distributed carbides will exist in quenched microstructure, and effectively inhabit the growth of austenite grain. With the increasing of quenching temperature, the volume fraction of undis- solved carbides will decrease. The excellent comprehensive mechanical properties can be obtained by quenched at 1 060 to 1 100℃ with tempered at 100 to 150 ℃, and it is mainly due to the high carbon martensite and fine grain size. At these temperature ranges, the hardness will retain about HRC 59.2 to HRC 61.6 and the Charpy U-notch impact toughness will retain about 17.3 to 20 J. A lot of M23C6 carbides precipitated from martensite matrix, at the same time along the boundaries of martensite lathes which leading to the decrease of impact toughness when tempered at 500 to 540 ℃. The MaC precipitants also existed in the martensite matrix of test steel after tempered at 500 ℃, and the mean size of M3 C precipitates is bigger than that of M23 C6 precipitates.
基金financially supported by the National Key Research&Development Program of China under grant No.2016YFB0300100the Fundamental Research Funds for the Central Universities(No.2014JBM108)the Prospective Joint Study of Industry-University Cooperation of Jiangsu Province under grant No.BY2015009-02
文摘Mechanical properties of a newly developed microalloyed bainitic steel were investigated after the hot forging, air cooling and tempering process. The microstructure of the as forged bainitic steel mainly consists of granular bainite and -20 vol. % martensite. The fraction of retained austenite remains unchanged until tempering at 200 ℃, above which it decreases significantly. The increase of tempering temperature leads to decreases of both ultimate tensile strength and total elongation but decreases of both yield strength and reduction of area. The maximum and mini- mum values of impact toughness were observed after tempering at around 200 and 400 ℃, respectively. These effects are mainly attributed to the decomposition of martensite/austenite con stituents and the tempering effects in martensite. The tempering of the forged bainitic steel at around 200 ℃ results in an excellent combination of strength and toughness, which is comparable to that of the conventional quenched and-tempered 40Cr steel. Therefore, low-tempering treatment coupled with post-forging residual stress relieving is a feasible method to further improve the mechanical prooerties of the bainitic foging steel.