期刊文献+
共找到3,529篇文章
< 1 2 177 >
每页显示 20 50 100
Expression of Bone-related Genes in Bone Marrow MSCs after Cyclic Mechanical Strain: Implications for Distraction Osteogenesis 被引量:12
1
作者 Meng-chun Qi Shu-juan Zou +2 位作者 Li-chi Han Hai-xiao Zhou Jing Hu 《International Journal of Oral Science》 SCIE CAS CSCD 2009年第3期143-150,共8页
Aim Understanding the response of mesenchymal stem cells (MSCs) to mechanical strain and their consequent gene expression patterns will broaden our knowledge of the mechanobiology of distraction osteogenesis. Method... Aim Understanding the response of mesenchymal stem cells (MSCs) to mechanical strain and their consequent gene expression patterns will broaden our knowledge of the mechanobiology of distraction osteogenesis. Methodology In this study, a single period of cyclic mechanical stretch (0.5 Hz, 2,000 με) was performed on rat bone marrow MSCs. Cellular proliferation and alkaline phosphatase (ALP) activity was examined. The mRNA expression of six bone-related genes (Ets-1, bFGF, IGF-Ⅱ, TGF-β, Cbfal and ALP) was detected using real-time quantitative RT-PCR. Results The results showed that mechanical strain can promote MSCs proliferation, increase ALP activity, and up-regulate the expression of these genes. A significant increase in Ets-1 expression was detected immediately after mechanical stimulation, but Cbfal expression became elevated later. The temporal expression pattem of ALP coincided perfectly with Cbfal. Conclusion The results of this study suggest that mechanical strain may act as a stimulator to induce differentiation of MSCs into osteoblasts, and that these bone-related genes may play different roles in the response of MSCs to mechanical stimulation. 展开更多
关键词 distraction osteogenesis mechanical strain mesenchymal stem cell (MSC) osteogenic factor gene expression
下载PDF
Effects of mechanical strain amplitude on the isothermal fatigue behavior of H13 被引量:2
2
作者 Yan Zeng Peng-peng Zuo +1 位作者 Xiao-chun Wu Shu-wen Xia 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第9期1004-1009,共6页
Isothermal fatigue (IF) tests were performed on H13 tool steel subjected to three different mechanical strain amplitudes at a constant temperature to determine the effects of mechanical strain amplitude on the microst... Isothermal fatigue (IF) tests were performed on H13 tool steel subjected to three different mechanical strain amplitudes at a constant temperature to determine the effects of mechanical strain amplitude on the microstructure of the steel samples. The samples' extent of damage after IF tests was compared by observation of their cracks and calculation of their damage parameters. Optical microscopy (OM) and scanning electron microscopy (SEM) were used to observe the microstructure of the samples. Cracks were observed to initiate at the surface because the strains and stresses there were the largest during thermal cycling. Mechanical strain accelerated the damage and softening of the steel. A larger mechanical strain caused greater deformation of the steel, which made the precipitated carbides easier to gather and grow along the deformation direction, possibly resulting in softening of the material or the initiation of cracks. 展开更多
关键词 tool steel HARDNESS MICROSTRUCTURE isothermal fatigue mechanical strain
下载PDF
In vivo evidence of IGF-I–estrogen crosstalk in mediating the cortical bone response to mechanical strain 被引量:1
3
作者 Subburaman Mohan Chetan Girijanand Bhat +1 位作者 Jon E Wergedal Chandrasekhar Kesavan 《Bone Research》 SCIE CAS 2014年第1期55-60,共6页
Although insulin-like growth factor-I (IGF-I) and estrogen signaling pathways have been shown to be involved in mediating the bone anabolic response to mechanical loading, it is not known whether these two signaling... Although insulin-like growth factor-I (IGF-I) and estrogen signaling pathways have been shown to be involved in mediating the bone anabolic response to mechanical loading, it is not known whether these two signaling pathways crosstalk with each other in producing a skeletal response to mechanical loading. To test this, at 5 weeks of age, partial ovariectomy (pOVX) or a sham operation was performed on heterozygous IGF-I conditional knockout (H IGF-I KO) and control mice generated using a Cre-loxP approach. At 10 weeks of age, a 10 N axial load was applied on the right tibia of these mice for a period of 2 weeks and the left tibia was used as an internal non-non-loaded control. At the cortical site, partial estrogen loss reduced total volumetric bone mineral density (BMD) by 5% in control pOVX mice (P=0.05, one-way ANOVA), but not in the H IGF-I KO pOVX mice. At the trabecular site, bone volume/total volume (BV/TV) was reduced by 5%-6% in both control pOVX (P〈0.05) and H IGF-I KO pOVX (P=0.05) mice. Two weeks of mechanical loading caused a 7 %-8% and an 11%-13% (P〈0.05 vs. non-loaded bones) increase in cortical BMD and cortical thickness (Ct.Th), respectively, in the control sham, control pOVX and H IGF-I KO sham groups. By contrast, the magnitude of cortical BMD (4%, P=0.13) and Ct.Th (6%, P〈0.05) responses were reduced by 50% in the H IGF-I KO pOVX mice compared to the other three groups. The interaction between genotype and estrogen deficiency on the mechanical loading-induced cortical bone response was significant (P〈0.05) by two-way ANOVA. Two weeks of axial loading caused similar increases in trabecular BV/TV (13%-17%) and thickness (17%-23%) in all four groups of mice. In conclusion, partial loss of both estrogen and IGF-I significantly reduced cortical but not the trabecular bone response to mechanical loading, providing in vivo evidence of the above crosstalk in mediating the bone response to loading. 展开更多
关键词 BONE IGF estrogen crosstalk in mediating the cortical bone response to mechanical strain
下载PDF
Mechanical Strain Regulates Osteoblast Proliferation Through Ca^(2+)-CaMK-CREB Signal Pathway 被引量:1
4
作者 Yong Guo Qi Lv +2 位作者 Xian-qiong Zou Zhi-xiong Yan Yu-xian Yan 《Chinese Medical Sciences Journal》 CAS CSCD 2016年第2期100-106,共7页
Objective To investigate the effects of mechanical strain on Ca^(2+)-calmodulin dependent kinase(CaMK)-cA MP response element binding protein(CREB) signal pathway and proliferation of osteoblasts. Methods Using a four... Objective To investigate the effects of mechanical strain on Ca^(2+)-calmodulin dependent kinase(CaMK)-cA MP response element binding protein(CREB) signal pathway and proliferation of osteoblasts. Methods Using a four-point bending device, MC3T3-E1 cells were exposed to mechanical tensile strains of 2500 μs and 5000 μs at 0.5 Hz respectively. The intracellular free Ca^(2+)([Ca^(2+)]i) concentration and calmodulin activity were assayed by fluorospectrophotometry, CaMK II β, CREB, and phosphorylated(activated) CREB(p-CREB) were assessed by Western blot, and cells proliferation was assayed with MTT. Pretreatment with verapamil was carried out to block Ca^(2+) channel, and inhibitor U73122 was used to inhibit phospholipase C(PLC). Results Mechanical strains of 2500 μs and 5000 μs for 1 to 10 minutes both increased [Ca^(2+)]i level of the cells. The 2500 μs strain, a periodicity of 1 h/d for 3 days, activated calmodulin, elevated protein levels of CaMK II β and p-CREB, and promoted cells proliferation, which were attenuated by pretreatment of verapamil or U73122. The effects of 5000 μs strain on calmodulin, CaMK II β, p-CREB and proliferation were contrary to 2500 μs strain. Conclusion The mechanical strain regulates osteoblasts proliferation through Ca^(2+)-Ca MK-CREB signal pathway via Ca^(2+) channel and PLC/IP_3 transduction cascades. 展开更多
关键词 mechanical strain calcium PHOSPHOLIPASE C proliferation CAMP response element BINDING protein
下载PDF
Experimental and numerical study on dynamic mechanical behaviors of shale under true triaxial compression at high strain rate
5
作者 Xiaoping Zhou Linyuan Han +1 位作者 Jing Bi Yundong Shou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期149-165,共17页
High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic ... High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic mechanical properties of shale.Dynamic experiments on shale subjected to true triaxial compression at different strain rates are first conducted in this research.The dynamic stress-strain curves,peak strain,peak stress and failure modes of shale are investigated.The results of the study indicate that the intermediate principal stress and the minor principal stress have the significant influence on the dynamic mechanical behaviors,although this effect decreases as the strain rate increases.The characteristics of compression-shear failure primarily occur in shale subjected to triaxial compression at high strain rates,which distinguishes it from the fragmentation characteristics observed in shale under dynamic uniaxial compression.Additionally,a numerical three-dimensional Split Hopkinson Pressure Bar(3D-SHPB),which is established by coupling PFC3D and FLAC3D methods,is validated to replicate the laboratory characteristics of shale.The dynamic mechanical characteristics of shale subjected to different confining stresses are systematically investigated by the coupling PFC3D and FLAC3D method.The numerical results are in good agreement with the experimental data. 展开更多
关键词 Dynamic behaviors True triaxial compression High strain rates Dynamic failure mechanism PFC3D-FLAC3D coupled method
下载PDF
The Effect of Cyclic Stretching on Matrix Production, Mineralization and Differentiation of Osteoblasts
6
作者 秦建 TANG +4 位作者 LILING Wang Yuanliang Gu Li 《High Technology Letters》 EI CAS 2003年第3期33-35,共3页
A four-point bending apparatus is used to investigate the effects of stretching on collagen synthesis, mineralization and differentiation of osteoblasts. Cells are stretched at 1500 με for 24 hours. The responses of... A four-point bending apparatus is used to investigate the effects of stretching on collagen synthesis, mineralization and differentiation of osteoblasts. Cells are stretched at 1500 με for 24 hours. The responses of osteoblasts to mechanical signal of physiological stretching are evaluated from three aspects: collagen production, extracellular inorganic calcium secretion and ALP activity. The results show that osteoblasts decrease the collagen synthesis, calcium secretion and ALP activity compared to the control cells (65.82%,73.51%,48.10% respectively), confirming that cyclic stretching at 1500 με inhabits the physiological activity of osteoblasts. 展开更多
关键词 成骨细胞 机械拉伸 矿化 胞间质合成 四点弯曲装置 物理仿真
下载PDF
The role of strain in oxygen evolution reaction
7
作者 Zihang Feng Chuanlin Dai +5 位作者 Zhe Zhang Xuefei Lei Wenning Mu Rui Guo Xuanwen Liu Junhua You 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期322-344,I0009,共24页
The oxygen evolution reaction(OER)is a crucial step in metal-air batteries and water splitting technologies,playing a significant role in the efficiency and achievable heights of these two technologies.However,the OER... The oxygen evolution reaction(OER)is a crucial step in metal-air batteries and water splitting technologies,playing a significant role in the efficiency and achievable heights of these two technologies.However,the OER is a four-step,four-electron reaction,and its slow kinetics result in high overpotentials,posing a challenge.To address this issue,numerous strategies involving modified catalysts have been proposed and proven to be highly efficient.In these strategies,the introduction of strain has been widely reported because it is generally believed to effectively regulate the electronic structure of metal sites and alter the adsorption energy of catalyst surfaces with reaction intermediates.However,strain has many other effects that are not well known,making it an important yet unexplored area.Based on this,this review provides a detailed introduction to the various roles of strain in OER.To better explain these roles,the review also presents the definition of strain and elucidates the potential mechanisms of strain in OER based on the d-band center theory and adsorption volcano plot.Additionally,the review showcases various ways of introducing strain in OER through examples reported in the latest literature,aiming to provide a comprehensive perspective for the development of strain engineering.Finally,the review analyzes the appropriate proportion of strain introduction,compares compressive and tensile strain,and examines the impact of strain on stability.And the review offers prospects for future research directions in this emerging field. 展开更多
关键词 Oxygen evolution reaction strain generation Tensile strain Compressive strain strain mechanism strain effects
下载PDF
Mechanical properties and energy evolution of Beishan shallow-layer granite under different unloading paths
8
作者 WANG Chuanle LI Erbing +4 位作者 ZHANG Dengke HAN Yang LU Hui HE Kang DU Guangyin 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1728-1744,共17页
Rock has mechanical characteristics and a fracture damage mechanism that are closely related to its loading history and loading path. The mechanical properties, fracture damage features, acoustic emission(AE) characte... Rock has mechanical characteristics and a fracture damage mechanism that are closely related to its loading history and loading path. The mechanical properties, fracture damage features, acoustic emission(AE) characteristics, and strain energy evolution of the Beishan shallow-layer granite used in triaxial unloading tests were investigated in this study. Three groups of triaxial tests, namely, conventional triaxial compression test(Group Ⅰ), maintaining deviatoric stress synchronously unloading confining pressure test(Group Ⅱ), and loading axial pressure synchronously unloading confining pressure test(Group Ⅲ), were carried out for the cylindrical granite specimens. AE monitoring device was utilized in these tests to determine the degree to which the AE waves and AE events reflected the degree of rock damage. In addition, the crack stress thresholds of the specimens were determined by volumetric strain method and AE parameter method, and strain energy evolution of the rock was explored in different damage stages. The results show that the shallow-layer granite experiences brittle failure during the triaxial loading test and unloading test, and the rock has a greater damage degree during the unloading test. The crack stress thresholds of these samples vary greatly between tests, but the threshold ratios of all samples are similar in the same crack damage stage. The Mogi-Coulomb strength criterion can better describe the unloading failure strength of the rock. The evolution of the AE parameter characteristics and strain energy differs between the specimens used in different stress path tests. The dissipative strain energy is the largest in Group Ⅱ and the smallest in Group Ⅰ. 展开更多
关键词 Beishan granite Unloading test mechanical properties Damage mechanism Acoustic emission strain energy
下载PDF
Study on Dynamic Mechanical Behavior of Al-Mg-Si Alloy
9
作者 陶小旺 LIU Jibo +3 位作者 LIU Xianbin CHEN Jianbin WANG Yonggang 汪小锋 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期454-462,共9页
The dynamic mechanical behavior of Al-Mg-Si alloy was investigated under different strain rates by mechanical property and microstructure characterization,constitutive behavior analysis and numerical simulation in the... The dynamic mechanical behavior of Al-Mg-Si alloy was investigated under different strain rates by mechanical property and microstructure characterization,constitutive behavior analysis and numerical simulation in the present study.As the strain rate increases,the yield strength,ultimate tensile strength and elongation increase first,then remain almost constant,and finally increase.The alloy always exhibits a typical ductile fracture mode,not depending on the strain rate.However,as the strain rate increases,the number of dimples gradually increases.Tensile deformation can refine grains,however,the grain structure is slightly affected by the strain rate.An optimized Johnson-Cook constitutive equation was used to describe the mechanical behavior and obtained by fitting the true stress-strain curves.The parameter C was described by a function related to the strain rate.The fitting true stress-strain curves by the JC model agree very well with the experimental true stress-strain curves.The true stress-strain curves calculated by the finite element numerical simulation agree well with the experimental true stress-strain curves. 展开更多
关键词 Al-Mg-Si alloy strain rate mechanical property MICROSTRUCTURE Johnson-Cook model finite element simulation
下载PDF
Mechanical strain triggering flux jumps of multi-filamentary Nb_(3)Sn wires
10
作者 Qing-Yu Wang Cun Xue You-He Zhou 《Superconductivity》 2022年第4期14-21,共8页
The composite multi‐filamentary Nb_(3)Sn wire with a high critical current density is a preferred option for fabricating the superconducting magnet beyond the limit of NbTi wire(9–16 T).However,one crucial issue ste... The composite multi‐filamentary Nb_(3)Sn wire with a high critical current density is a preferred option for fabricating the superconducting magnet beyond the limit of NbTi wire(9–16 T).However,one crucial issue stems from the fact that electromagnetic force in superconducting coils is very strong,and the critical physical properties of Nb_(3)Sn,such as Jc,are more sensitive to mechanical strain than those of other possible low‐temperature superconductors.We theoretically investigated the impact of mechanical strain on the thermomagnetic instabilities such as the flux jump(FJ)and quenching of Nb_(3)Sn wire exposed to a static magnetic field and transport current.The good agreements with H formulation or H‐φformulation implemented on COMSOL software confirm the validity of our numerical simulations using home‐made codes.It is discovered that mechanical strain can trigger flux jumps even in a static magnetic field.Furthermore,the threshold value of mechanical strain to trigger the first flux jump is a monotonic function of the static magnetic field in the case of high transport currents,while it is a non‐monotonic function in the case of low transport currents.It is attributed to the fact that flux can be released by the mechanical strain,causing smooth flux penetration before triggering the flux jump.We also present the stable/unstable regions by applying mechanical strain by varying transport current,magnetic field,and working temperature,which helps in avoiding thermomagnetic instabilities while designing the superconducting magnet. 展开更多
关键词 Nb_(3)Sn wires Thermomagnetic instability Flux jump mechanical strain
原文传递
Efect of high temperature and high strain rate on the dynamic mechanical properties of Fe-30Mn-3Si-4Al TWIP steel 被引量:3
11
作者 Zhi-ping Xiong Xue-ping Ren +3 位作者 Wei-ping Bao Jian Shu Shu-xia Li Hai-tao Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第9期835-841,共7页
The dynamic mechanical properties of Fe-30Mn-3Si-4A1 twinning induced plasticity (TWIP) steel were studied by the split-Hopkinson pressure bar (SHPB) at temperatures of 298-1073 K and strain rates of 700, 2500, an... The dynamic mechanical properties of Fe-30Mn-3Si-4A1 twinning induced plasticity (TWIP) steel were studied by the split-Hopkinson pressure bar (SHPB) at temperatures of 298-1073 K and strain rates of 700, 2500, and 5000 s-1. The TWIP steel indicates strain rate hardening effect between 700 and 2500 s-1, but it shows strain rate softening effect between 2500 and 5000 s-1. In addition, the strain rate softening effect enhances with an increase in deformation temperature. After deformation, the microstructures were studied by optical microscopy (OM). It is shown that the deformation bands become more convergence, a part of which become interwoven with an increase in strain rate, and the dynamic recovery and recrystallization are enhanced with an increase in both temperature and strain rate. 展开更多
关键词 TWIP steels mechanical properties strain rate TEMPERATURE
下载PDF
EFFECTS OF TEST TEMPERATURE AND STRAIN RATE ON THE MECHANICAL PROPERTIES IN AN INTERCRITICALLYHEAT-TREATED BAINITE-TRANSFORMED STEEL 被引量:2
12
作者 Z.Li D.Wu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第6期840-848,共9页
Larger amount of austenite could be retained in an intercritically heat-treated bainite- transformed steel. The elongation and the strength-ductility balance of the steel could be enhanced considerably due to strain-i... Larger amount of austenite could be retained in an intercritically heat-treated bainite- transformed steel. The elongation and the strength-ductility balance of the steel could be enhanced considerably due to strain-induced martensite transformation and transformation- induced plasticity (TRIP) of retained austenite. The effects of test temperature and strain rate on the mechanical properties and strain induced transformation behavior of retained austenite in the steel were investigated. Total elongation and strength-ductility balance of the specimen reached maximum when it strained at a strain rate of 2.8×10-4s-1 and at 350℃. The relation between test temperature and tensile properties showed the same tendency at three kinds of strain rates. Flow stress increased considerably with decreasing the strain rate. 展开更多
关键词 strain rate mechanical property strain-induced transformation trans- formation-induced plasticity (TRIP)
下载PDF
Experimental investigation of rigid confinement effects of radial strain on dynamic mechanical properties and failure modes of concrete 被引量:4
13
作者 Pengfei Liu Xiaoping Zhou Qihu Qian 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第5期939-951,共13页
In this study,to confirm the effect of confining pressure on dynamic mechanical behavior and failure modes of concrete,a split Hopkinson pressure bar dynamic loading device was utilized to perform dynamic compressive ... In this study,to confirm the effect of confining pressure on dynamic mechanical behavior and failure modes of concrete,a split Hopkinson pressure bar dynamic loading device was utilized to perform dynamic compressive experiments under confined and unconfined conditions.The confining pressure was achieved by applying a lateral metal sleeve on the testing specimen which was loaded in the axial direction.The experimental results prove that dynamic peak axial stress,dynamic peak lateral stress,and peak axial strain of concrete are strongly sensitive to the strain rate under confined conditions.Moreover,the failure patterns are significantly affected by the stress-loading rate and confining pressure.Concrete shows stronger strain rate effects under an unconfined condition than that under a confined condition.More cracks are created in concrete subjected to uniaxial dynamic compression at a higher strain rate,which can be explained by a thermal-activated mechanism.By contrast,crack generation is prevented by confinement.Fitting formulas of the dynamic peak stress and dynamic peak axial strain are established by considering strain rate effects(50–250 s-1)as well as the dynamic confining increase factor(DIFc). 展开更多
关键词 strain rate effect Multiaxial loading Dynamic peak axial stress Thermo-activated mechanism Dynamic increase factor
下载PDF
DEPENDENCE OF PREDICTION MODEL OF FORMING LIMIT STRAINS ON FORMING METHOD AND MECHANICAL PROPERTIES OF SHEET METALS 被引量:1
14
作者 Zhou, Weixian 《中国有色金属学会会刊:英文版》 EI CSCD 1997年第1期52-56,共5页
DEPENDENCEOFPREDICTIONMODELOFFORMINGLIMITSTRAINSONFORMINGMETHODANDMECHANICALPROPERTIESOFSHEETMETALS①ZhouWeix... DEPENDENCEOFPREDICTIONMODELOFFORMINGLIMITSTRAINSONFORMINGMETHODANDMECHANICALPROPERTIESOFSHEETMETALS①ZhouWeixianDepartmentofAe... 展开更多
关键词 FORMING LIMIT strainS PREDICTION model FORMING method mechanical PROPERTIES
下载PDF
MICROMECHANICAL MODELLING OF STRAIN SOFTENING IN MICROCRACK-WEAKENED QUASI-BRITTLE MATERIALS 被引量:1
15
作者 Feng Xiqiao Yu Shouwen(Dept.of Engineering Mechanics,Tsinghua University,Beijing 100084,P.R.China) 《Acta Mechanica Solida Sinica》 SCIE EI 1995年第2期121-132,共12页
By using the concept of domain of microcrack growth(DMG),the micromechanisms of damage in quasi-brittle materials subjected to triaxial either tensile or compressive loading are investigated and the complete strew-str... By using the concept of domain of microcrack growth(DMG),the micromechanisms of damage in quasi-brittle materials subjected to triaxial either tensile or compressive loading are investigated and the complete strew-strain relation including four stages is obtained from micromechanical analysis.The regime of pre-peak nonlinear hardening corresponds to the distributed damage,i.e.the stable propagation of microcracks.After the attainment of the ultimate strength of load-bearing capacity, some microcracks experience the second unstable growth and the distributed damage is transmitted to the localization of damage.These analyses improve our understanding of the hardening and softening behaviors of quasi-brittle materials. 展开更多
关键词 MICROCRACKS strain softening constitutive relation MICROmechanical damage mechanics brittle material
下载PDF
Effects of strain rates on mechanical properties of limestone under high temperature 被引量:10
16
作者 Tang Furong Mao Xianbiao +2 位作者 Zhang Lianying Yin Huiguang Li Yan 《Mining Science and Technology》 EI CAS 2011年第6期857-861,共5页
The experimental tests for limestone specimens at 700 °C in uniaxial compression were carried out to inves- tigate the mechanical effects of loading rates on limestone by using a MTS810 rock mechanics servo- cont... The experimental tests for limestone specimens at 700 °C in uniaxial compression were carried out to inves- tigate the mechanical effects of loading rates on limestone by using a MTS810 rock mechanics servo- controlled testing system considering the loading rate as a variable. The mechanical properties of limestone such as the stress-strain curve, variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the strain rates ranging from 1.1 10à5 to 1.1 10à1 sà1. (1) Sharp decreases were shown for the peak strength and elastic modulus of limestone from 1.1 10à5 to 1.1 10à4 sà1 at 700 °C as well as a downward trend was shown from 1.1 10à4 to 1.1 10à1 sà1 with the rise of the strain rate. (2) The peak strain increased from 1.1 10à5 to 1.1 10à4 sà1, however, there was no obvious changes shown for the peak strain of limestone from 1.1 10à4 to 1.1 10à1 sà1. These results can provide valuable references for the rock blasting effect and design of mine. 展开更多
关键词 石灰岩 力学性能 应变速率 高温 岩石力学 机械特性 弹性模量 峰值强度
下载PDF
Mechanical model for yield strength of nanocrystalline materials under high strain rate loading
17
作者 朱荣涛 周剑秋 +1 位作者 马璐 张振忠 《Journal of Central South University》 SCIE EI CAS 2008年第S1期447-452,共6页
To understand the high strain rate deformation mechanism and determine the grain size,strain rate and porosity dependent yield strength of nanocrystalline materials,a new mechanical model based on the deformation mech... To understand the high strain rate deformation mechanism and determine the grain size,strain rate and porosity dependent yield strength of nanocrystalline materials,a new mechanical model based on the deformation mechanism of nanocrystalline materials under high strain rate loading was developed.As a first step of the research,the yield behavior of the nanocrystalline materials under high strain rate loading was mainly concerned in the model and uniform deformation was assumed for simplification.Nanocrystalline materials were treated as composites consisting of grain interior phase and grain boundary phase,and grain interior and grain boundary deformation mechanisms under high strain rate loading were analyzed,then Voigt model was applied to coupling grain boundary constitutive relation with mechanical model for grain interior phase to describe the overall yield mechanical behavior of nanocrystalline materials.The predictions by the developed model on the yield strength of nanocrysatlline materials at high strain rates show good agreements with various experimental data.Further discussion was presented for calculation results and relative experimental observations. 展开更多
关键词 NANOCRYSTALLINE materials DEFORMATION mechanism modeling YIELD STRENGTH high strain rate
下载PDF
Mechanical property of strain-hardening cementitious composites modified with superabsorbent polymers 被引量:2
18
作者 Deng Hanwen 《Journal of Southeast University(English Edition)》 EI CAS 2017年第3期309-315,共7页
In order to improve the tensile property, flexuralproperty and drying shrinkage of strain-hardening cementitiouscomposites (SHCC), mixtures quantitatively modified withsuperabsorbent polymer (SAP) were investigate... In order to improve the tensile property, flexuralproperty and drying shrinkage of strain-hardening cementitiouscomposites (SHCC), mixtures quantitatively modified withsuperabsorbent polymer (SAP) were investigated. Theuniaxial tensile test, the four-point bending test, thecompressive test, the drying shrinkage test and theenvironmental scanning electron microscope (ESEM) wereemployed to investigate the tensile strain capacity, flexuraldeformation capacity, compressive strength, drying shrinkage,crack width and self-healing of SHCC. The experimentalresults show that SHCC modified with SAP particles exhibitsexcellent ductility and deformability, and the tensile strain isup to about 4.5% and the average crack width is controlledaround 40 μm. Meanwhile, the drying shrinkage of SHCCmodified with SAP particles can reduce by about 60%.Furthermore, the self-healing behavior is observed in thecracks of specimen after three cycles of high-low relativehumidity curing, and the self-healing products can completelyfill the cracks of SHCC specimens modified with SAPparticles. It is, therefore, feasible to produce SHCC materialmodified with SAP particles, while simultaneously retaininghigher material ductility. 展开更多
关键词 strain-HARDENING cementitious composites (SHCC) SUPERABSORBENT polymer (SAP) mechanical property SELF-HEALING
下载PDF
Analysis of Stress Strain State of X-60 Pipe Weld Joints Employing Magnetic-Anisotropy Indicator of Mechanical Stress
19
作者 Hamid Suliman Hamid Elhag Nikulin Vasili +1 位作者 Isaac Einav Yagoub Kamal Eldin 《Engineering(科研)》 2016年第7期499-508,共11页
This research presents an experimental study of analysis of stress strain state SSS of X-60 pipe weld joints employing magnetic anisotropy indicator of mechanical stresses Stress Vision (IMS) using of “before and af... This research presents an experimental study of analysis of stress strain state SSS of X-60 pipe weld joints employing magnetic anisotropy indicator of mechanical stresses Stress Vision (IMS) using of “before and after” comparison approach taking readings on pipe base metal, weld area and heat affected zone (HAZ) before and after hydrotest. Test results were compared with X-ray testing results for welded joints and with metallographic testing. Test results demonstrate the relevance of applied test conditions and redistribution of residual stresses. A new equation was established for estimating the residual (technological) and operating stresses in other pipelines with a tolerance of 15% in the field of elastic deformation (up to the yield point), according to Hooke law. 展开更多
关键词 Stress strain State (SSS) Residual Stresses Stress Concentration Indicator of mechanical Stress
下载PDF
Wearable and stretchable conductive polymer composites for strain sensors:How to design a superior one?
20
作者 Liwei Lin Sumin Park +6 位作者 Yuri Kim Minjun Bae Jeongyeon Lee Wang Zhang Jiefeng Gao Sun Ha Paek Yuanzhe Piao 《Nano Materials Science》 EI CAS CSCD 2023年第4期392-403,共12页
Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly ... Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly attached to human skin,providing visualized detection for human motions and personal healthcare.Conductive polymer composites(CPC)composed of conductive fillers and flexible polymers have the advantages of high stretchability,good flexibility,superior durability,which can be used to prepare flexible strain sensors with large working strain and outstanding sensitivity.This review has put forward a comprehensive summary on the fabrication methods,advanced mechanisms and strain sensing abilities of CPC strain sensors reported in recent years,especially the sensors with superior performance.Finally,the structural design,bionic function,integration technology and further application of CPC strain sensors are prospected. 展开更多
关键词 Wearable strain sensors Conductive polymer composites MECHANISM Sensing performance
下载PDF
上一页 1 2 177 下一页 到第
使用帮助 返回顶部