期刊文献+
共找到81篇文章
< 1 2 5 >
每页显示 20 50 100
An 8-Node Plane Hybrid Element for StructuralMechanics Problems Based on the Hellinger-Reissner Variational Principle
1
作者 Haonan Li WeiWang +1 位作者 Quan Shen Linquan Yao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1277-1299,共23页
The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurat... The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurate andunstable when applied. Therefore, developing new elements within the framework of the generalized variationalprinciple is of great significance. In this paper, an 8-node plane hybrid finite element with 15 parameters (PHQ8-15β) is developed for structural mechanics problems based on the Hellinger-Reissner variational principle.According to the design principle of Pian, 15 unknown parameters are adopted in the selection of stress modes toavoid the zero energy modes.Meanwhile, the stress functions within each element satisfy both the equilibrium andthe compatibility relations of plane stress problems. Subsequently, numerical examples are presented to illustrate theeffectiveness and robustness of the proposed finite element. Numerical results show that various common lockingbehaviors of plane elements can be overcome. The PH-Q8-15β element has excellent performance in all benchmarkproblems, especially for structures with varying cross sections. Furthermore, in bending problems, the reasonablemesh shape of the new element for curved edge structures is analyzed in detail, which can be a useful means toimprove numerical accuracy. 展开更多
关键词 8-node plane hybrid element Hellinger-Reissner variational principle locking behaviors structural mechanics problems
下载PDF
A systematic review of rigid-flexible composite pavement
2
作者 Zhaohui Liu Shiqing Yu +2 位作者 You Huang Li Liu Yu Pan 《Journal of Road Engineering》 2024年第2期203-223,共21页
Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote ... Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote its application and address key issues while identifying future directions.The design theory and methodology of rigid-flexible composite pavement are discussed,followed by a description of its structural and mechanical behavior characteristics.The load stress,temperature stress,and their interactive effects between the asphalt layer and the rigid base were analyzed.It is clarified that the asphalt layer serves a dual role as both a“functional layer”and a“structural layer”.Typical distresses of rigid-flexible composite pavement,which primarily occur in the asphalt layer,were discussed.These distresses include reflective cracking,top-down cracking,rutting,and compressive-shear failure.Generally,the integrity of the rigid base and the interlaminar bonding conditions significantly impact the performance and distress of the asphalt layer.The technology for enhancing the performance of rigid-flexible composite pavement is summarized in three aspects:asphalt layer properties,rigid base integrity,and interlaminar bonding condition.The study concludes that developing high-performance pavement materials based on their structural behaviors is an effective approach to improve the performance and durability of rigid-flexible composite pavement.The integrated design of structure and materials represents the future direction of road design. 展开更多
关键词 Rigid-flexible composite pavement Structural mechanical properties Compression-shear failure Integrated design of structure and material
下载PDF
Multistable Mechanical Metamaterials:A Brief Review 被引量:3
3
作者 ZHANG Hang WU Jun +1 位作者 ZHANG Yihui FANG Daining 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第1期1-17,共17页
Over the past decade,multistable mechanical metamaterials have been widely investigated because of their novel shape reconfigurability and programmable energy landscape.The ability to reversibly reshape among diverse ... Over the past decade,multistable mechanical metamaterials have been widely investigated because of their novel shape reconfigurability and programmable energy landscape.The ability to reversibly reshape among diverse stable states with different energy levels represents the most important feature of the multistable mechanical metamaterials.We summarize main design strategies of multistable mechanical metamaterials,including those based on self-assembly scheme,snap-through instability,structured mechanism and geometrical frustration,with a focus on the number and controllability of accessible stable states.Then we concentrate on unusual mechanical properties of these multistable mechanical metamaterials,and present their applications in a wide range of areas,including tunable electromagnetic devices,actuators,robotics,and mechanical logic gates.Finally,we discuss remaining challenges and open opportunities of designs and applications of multistable mechanical metamaterials. 展开更多
关键词 multistable mechanical metamaterials SELF-ASSEMBLY SNAP-THROUGH structured mechanism geometrical frustration
下载PDF
Steady-State Cornering Properties of a Non-pneumatic Tire with Mechanical Elastic Structure 被引量:2
4
作者 Fu Hongxun Zhao Youqun +2 位作者 Lin Fen Du Xianbin Zhu Mingmin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第5期586-592,共7页
Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,exper... Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,experimental research on mechanics characteristics of ME-wheel under steady-state cornering conditions are carried out.The test of steady-state cornering properties of ME-wheel at different experimental parameter conditions is conducted by test bench for dynamic mechanical properties of tyre.Cornering property curves are used to analyze the steady-state cornering properties of ME-wheel,namely the variation tendency of lateral force or aligning torque with the increase of side-slip angle.Moreover,evaluation indexes for cornering properties of ME-wheel are extracted and the effect of different experimental parameters(including vertical load,friction coefficient,and speed)on cornering properties of ME-wheel is contrastively analyzed.The proposed research can provide certain reference to facilitate structure parameters and cornering properties optimizing process of ME-wheel. 展开更多
关键词 tyres non-pneumatic tyre mechanical elastic structure steady-state cornering properties
下载PDF
Mechanically Driven Alloying and Structural Evolution of Nanocrystalline Fe_(60)Cu_(40) Powder 被引量:1
5
作者 Yuanda DONG and Xueming MA(School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China)Yuanzheng YANG(Dept. of Mechanical Engineering(2), South China University of Technology, Guangzhou 510641, China)Fangxin LIU and Genmiao WA 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1997年第4期354-358,共5页
Highly supersaturated nanocrystalline fcc Fe60Cu40 alloy has been prepared by mechanical alloying of elemental powders. The phase transformation is monitored by X-ray diffraction (XRD),Mossbauer spectroscopy and exten... Highly supersaturated nanocrystalline fcc Fe60Cu40 alloy has been prepared by mechanical alloying of elemental powders. The phase transformation is monitored by X-ray diffraction (XRD),Mossbauer spectroscopy and extended X-ray absorption fine structure (EXAFS). The powder obtained after milling is of single fcc structure with grain size of nanometer order. The Mossbauer spectra of the milled powder can be fitted by two subspectra whose hyperfine magnetic fields are 16 MA/m and 20 MA/m while that of pure Fe disappeared. EXAFS results show that the radial structure function (RSF) of Fe K-edge changed drastically and finally became similar to that of reference Cu K-edge, while that of Cu K-edge nearly keeps unchanged in the process of milling. These imply that bcc Fe really transforms to fcc structure and alloying between Fe and Cu occurs truly on an atomic scale. EXAFS results indicate that iron atoms tend to segregate at the boundaries and Cu atoms are rich in the fcc lattice. Annealing experiments show that the Fe atoms at the interfaces are easy to cluster to α-Fe at a lower temperature, whereas the iron atoms in the lattice will form γ-Fe first at temperature above 350℃, and then transform to bcc Fe 展开更多
关键词 mechanically Driven Alloying and Structural Evolution of Nanocrystalline Fe MA CU POWDER Figure
下载PDF
Editorial: Special subject on the mechanical behavior of thermal protection materials and structures 被引量:2
6
作者 Songhe Meng Huimin Xie 《Theoretical & Applied Mechanics Letters》 CAS 2014年第2期17-18,共2页
The thermal protection materials and structures are widely used in hypersonic vehicles for the purpose of thermal insulation, and their mechanical behavior is one of the key issues in design and manufacture of hyperso... The thermal protection materials and structures are widely used in hypersonic vehicles for the purpose of thermal insulation, and their mechanical behavior is one of the key issues in design and manufacture of hypersonic vehicles. It is our great pleasure to present the seven papers in this special subject of Theoretical & Applied Mechanics Letters (TAML) and introduce the recent progresses on the mechanical behavior of thermal protection materials and structures by the authors. 展开更多
关键词 SIC Special subject on the mechanical behavior of thermal protection materials and structures EDITORIAL
下载PDF
Effects of mechanical activation on the structural changes and microstructural characteristics of the components of ferruginous quartzite beneficiation tailings 被引量:2
7
作者 Ermolovich E.A. Ermolovich O.V. 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期1043-1049,共7页
The effects of mechanical activation in a planetary mill on the structural changes and microstructural characteristics of the components of ferruginous quartzite beneficiation railings generated by wet magnetic separa... The effects of mechanical activation in a planetary mill on the structural changes and microstructural characteristics of the components of ferruginous quartzite beneficiation railings generated by wet magnetic separation process were studied using X-ray and laser diffraction methods. The results revealed the relationship between variations in the mean particle size of activated powders and the milling time. The crystallite size, microstrain, lattice parameters and unit cell volumes were determined for different milling times in powder samples of quartz, hematite, dolomite, and magnetite from the beneficiation tailings. The main trends in the variation of the crystallite size of quartz, hematite, dolomite, and magnetite as a function mean particle size of powder samples were revealed. Changes in the particle shape as a function of the activation time was also investigated. 展开更多
关键词 Ferruginous quartzite beneficiation tailings mechanical activation Crystallites Planetary mill Microstructure Structural changes
下载PDF
Microstructure and Mechanical Performance of Cu-SnO_2-rGO based Composites Prepared by Plasma Activated Sintering 被引量:2
8
作者 罗国强 HUANG Jing +4 位作者 JIN Zhipeng LI Meijuan JIANG Xiaojuan SHEN Qiang ZHANG Lianmeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第6期1152-1158,共7页
A novel chemical technique combined with unique plasma activated sintering(PAS) was utilized to prepare consolidated copper matrix composites(CMCs) by adding Cu-SnO2-rGO layered micro powders as reinforced fillers... A novel chemical technique combined with unique plasma activated sintering(PAS) was utilized to prepare consolidated copper matrix composites(CMCs) by adding Cu-SnO2-rGO layered micro powders as reinforced fillers into Cu matrix. The repeating Cu-SnO2-rGO structure was composed of inner dispersed reduced graphene oxide(r GO), SnO2 as intermedia and outer Cu coating. SnO2 was introduced to the surface of rGO sheets in order to prevent the graphene aggregation with SnO2 serving as spacer and to provide enough active sites for subsequent Cu deposition. This process can guarantee rGO sheets to suffi ciently disperse and Cu nanoparticles to tightly and uniformly anchor on each layer of rGO by means of the SnO2 active sites as well as strictly control the reduction speed of Cu^2+. The complete cover of Cu nanoparticles on rGO sheets thoroughly avoids direct contact among rGO layers. Hence, the repeating structure can simultaneously solve the wettability problem between rGO and Cu matrix as well as improve the bonding strength between rGO and Cu matrix at the well-bonded Cu-SnO2-rGO interface. The isolated rGO can effectively hinder the glide of dislocation at Cu-rGO interface and support the applied loads. Finally, the compressive strength of CMCs was enhanced when the strengthening effi ciency reached up to 41. 展开更多
关键词 graphene Cu-SnO2-rGO structure copper matrix composites sensitization plasma activated sintering mechanical property
下载PDF
Mechanical Behaviour and Structure Instability of Al_3Ti Alloy
9
作者 D.G.Morris(Institute of Structural Metallurgy, University of Neuchatel, Avenue de Bellevaux 51, Neuchatel, Switzerland) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第1期1-14,共14页
Trialuminide alloys of elements such as Ti. Nb or Zr are of particular interest as materials for high temperature usage because their density is very low and specific strength and elastic rnoduli are then very high. T... Trialuminide alloys of elements such as Ti. Nb or Zr are of particular interest as materials for high temperature usage because their density is very low and specific strength and elastic rnoduli are then very high. This report concentrates on recent work on Al3Ti alloys which have been alloyed with ternary elements such that the higher symmetry ordered cubic structure is obtained, leading to somewhat easier operation of deformation mechan isms and hence improved ductility and toughness.Fine details of the crystal structure of cubic trialuminides are considered here and it is shown that the materials generally possess some remnant tetragonal chemical ordering which can affect their me chanical behaviour. In addition the compositional range over which a stable single phase is retained is shown to be extremely small, such that in most cases the materials examined show some form of microstructural instability. These instabilities affect the mechanical behaviour of the materials, for exarnple producing general strengthening. leading to precipitation hardening du ring hig h temperature testing, and causing age hardening instabilities during high temperature static or dynamic testing.Such structural instabifity feads to significant modifications at superdislocations, affecting both the dislocation cores and their associated APB's. Failure for these cubic materials still occurs at very small plastic strains and seems to be determined by difficulties of superdislocation creation near a propagating crack rather than by problems of suitable dislocation configuration and mobility. Possible ways to enhance ductility and toughness by alloying and microstructural modification will be discussed. 展开更多
关键词 TI FIGURE mechanical Behaviour and Structure Instability of Al3Ti Alloy AL
下载PDF
Effect of Cooling Rate after hot Deformation on Structure and Mechanical Properties of Low Alloy Wear Resistance Cast iron
10
作者 刘剑平 李丽霞 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S2期258-261,共4页
The effect of cooling rate after 40% hot deformation on structure and mechanical properties of low alloy wear resistance cast iron was investigated by metallographic, scanning electron microscopes and detection of pro... The effect of cooling rate after 40% hot deformation on structure and mechanical properties of low alloy wear resistance cast iron was investigated by metallographic, scanning electron microscopes and detection of properties. The results show that for the cast steel after deformed, the amount of granular carbides of precipitation during the cooling decreased with the increase of the cooling rate, but the hardness was obviously enhanced, as a result, better mechanical properties will be obtained by force air cooling(cooling rate is about 7 ℃·s-1). And the reason of the change for structure and mechanical properties of the cast steel were analyzed. 展开更多
关键词 hot deformation low alloy wear resistance cast iron cooling rate structure and mechanical properties rare earths
下载PDF
INFLUENCE OF LANTHANUM ON THE STRUCTURE AND MECHANICAL PROPERTIES OF ALUMINUMSILICON EUTECTIC ALLOY
11
作者 坚增运 商宝禄 鲁德洋 《Journal of Rare Earths》 SCIE EI CAS CSCD 1990年第3期206-211,共6页
This paper deals with the characteristics of silicon modification with lanthanum of Al-Si eutectic alloy in sand mold and metal mold with optical microscopy,scanning electron microscopy,electron microprobe and X-ray d... This paper deals with the characteristics of silicon modification with lanthanum of Al-Si eutectic alloy in sand mold and metal mold with optical microscopy,scanning electron microscopy,electron microprobe and X-ray diffractometer.It is found that the amount of lanthanum,liquid alloy condition,holding time and stir- ring liquid influence the modification of silicon.The modification of silicon with lanthanum is of long effectiveness and has a“incubation time”.The modification can improve the ductility(δ_s)and tensile strength (σ_b)of the alloy,but their maximum values are not corresponding to the same amount of lanthanum. 展开更多
关键词 than La INFLUENCE OF LANTHANUM ON THE STRUCTURE AND mechanical PROPERTIES OF ALUMINUMSILICON EUTECTIC ALLOY
下载PDF
Reinforcement strength reduction in FEM for mechanically stabilized earth structures
12
作者 薛剑峰 陈建峰 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2691-2698,共8页
The factor of safety of mechanically stabilized earth(MSE) structures can be analyzed either using limit equilibrium method(LEM) or strength reduction method(SRM) in finite element/difference method. In LEM, the stren... The factor of safety of mechanically stabilized earth(MSE) structures can be analyzed either using limit equilibrium method(LEM) or strength reduction method(SRM) in finite element/difference method. In LEM, the strengths of the reinforcement members and soils are reduced with the same factor. While using the SRM, only soil strength is reduced during the calculation of the factor of safety. This causes inconsistence in calculating the factor of safety of the MSE structures. To overcome this, an iteration method is proposed to consider the strength reduction of the reinforcements in SRM. The method is demonstrated by using PLAXIS, a finite element software. The results show that the factor of safety converges after a few iterations. The reduction of strength has different effects on the factor of safety depending on the properties of the reinforcements and the soil, and failure modes. 展开更多
关键词 mechanically stabilized earth structures factor of safety strength reduction method iterative method
下载PDF
Mechanical Research on Biucleus-Type Vortex Structures
13
作者 Zeng Zuoxun Section of Geomechanics, China University of Geosciences, Wuhan, Hubei Fei Zhenbi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1990年第4期345-362,462,共19页
A new type of vortex structure-binucleus-type vortex structure-is presented in this paper. It is charac-terized by two nuclear columns which distinguish it from uninuclcus-type vorlex structure. The vortical sur-faces... A new type of vortex structure-binucleus-type vortex structure-is presented in this paper. It is charac-terized by two nuclear columns which distinguish it from uninuclcus-type vorlex structure. The vortical sur-faces of the structure are commonly s-shaped and reversed s-shaped and subordinately of clliptic andhyperbolic shape. and sometimes turbine-like surfaces are observed. On the basis of field structural studies. a mechanical model of rotation around a binuclear column ofcrustal materials is presented in the paper. Burgers viscoelastic solutions of the stress field and deformationfield of this structural type have been obtained using the principle and method of rheology. and simulation ex-periments have been performed. The results of the theoretical calculation and experiments indicate that theproposed mechanical model is applicable. 展开更多
关键词 mechanical Research on Biucleus-Type Vortex Structures
下载PDF
MECHANICAL VIBRATIONAL POWER FLOW IN BEAM-PLATE ASSEMBLIES
14
作者 Yi Chuijie Qinghua University Chen Tianning Li Wei Huang Xieqing Xi’an Jiaotong University 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1995年第2期135-141,共7页
The vibrational power flow in the beam-plate assemblies and then with the isolators is investigated using analytical ' power flow' approach based on the some concepts of mechanical mo- bility and structural dy... The vibrational power flow in the beam-plate assemblies and then with the isolators is investigated using analytical ' power flow' approach based on the some concepts of mechanical mo- bility and structural dynamics. Theoretical expressions of the power flow in the structures are given and examined. The numerical results of the expressions are good agreements with the measuring re- sults obtained by the technique of vibration intensity. On the basis of these results, possible ways of reducing the vibrational power flow in the structures are suggested . 展开更多
关键词 Beam structure Plate structure mechanical mobility Power flow
下载PDF
Structural Evolution of Fullerene during Mechanical Milling
15
作者 Z. G.Liu H. Ohi K. Tsuchiya and M. Umemoto(Department of Production Systems Engineering, Toyohashi University of Technology, Tempaku-cho,Toyohashi 441-8580, Japan To whom correspondence should be addressedE-mail: liuzg@umelab-61.tutpse.tut.ac.jp) K.Mas 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第5期405-409,共5页
Mechanical milling of fullerene (C60(C70)) was investigated to understand the structural evolu-tion. Mechanical milling could not destroy the molecular structure of C60(C70), while the longrange periodicity of the fCc... Mechanical milling of fullerene (C60(C70)) was investigated to understand the structural evolu-tion. Mechanical milling could not destroy the molecular structure of C60(C70), while the longrange periodicity of the fCc crystalline structure was easiIy damaged. Longer miIIing time couldresult in the formation of C60(C70) polymer, including C60 dimer. 展开更多
关键词 FIGURE Structural Evolution of Fullerene during mechanical Milling WANG
下载PDF
Structural and Magnetic Properties of Mechanically Alloyed Nd_(15)Fe_(70)T_(15)N_δ(T=V,Mo) Magnets
16
作者 Xinguo ZHAO Zhidong ZHANG +1 位作者 Wei LIU Qun WAN and Xaokai SUN(Institute of Metal Research, Chinese Academy f Sciences, Shenyang, 110015, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第1期1-4,共4页
Structural and magnetic properties of Nd15Fe70T15Nδ(T=V, Mo) alloys, made by mechanical alloying (MA) followed by heat-treatment and nitriding, have been investigated systematically.Effects of annealing temperature o... Structural and magnetic properties of Nd15Fe70T15Nδ(T=V, Mo) alloys, made by mechanical alloying (MA) followed by heat-treatment and nitriding, have been investigated systematically.Effects of annealing temperature on the structure and magnetic properties of the materials were studied by means of X-ray diffraction, AC susceptibility and high field magnetization measurements. Under pure argon atmosphere, the optimum temperatures for the heat treatment are found to be 75 and 850℃ for Nd15Fe7015Nδ and Nd15Fe70Mo15Nδ respectively. Correspondingly, the following magnetic properties are achieved : (1) Nd15Fe70V15Nδ:Br=0.63 T,,HC=8.01kA/cm (10.1 kOe), (BH )max=50.3 kJ/m3 (6 32 MGOe), (2) Nd15Fe70Mo15Nδ :Br=0.42 T. iHc=5.6 kA/cm (7.4 kOe), (BH )max=26.6 kJ/m3 (3.34 MGOe) 展开更多
关键词 FE T=V Mo T MAGNETS Structural and Magnetic Properties of mechanically Alloyed Nd
下载PDF
The action mechanisms and structures designs of F-containing functional materials for high performance oxygen electrocatalysis 被引量:1
17
作者 Gang Wang Shuwei Jia +7 位作者 Hongjing Gao Yewen Shui Jie Fan Yixia Zhao Lei Li Weimin Kang Nanping Deng Bowen Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期377-397,I0010,共22页
Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a cent... Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a central role in clean energy conversion,enabling a number of sustainable processes for future air battery technologies.Fluorine,as the most electronegative element(4.0)not only can induce more efficient regulation for the electronic structure,but also can bring more abundant defects and other novel effects in materials selection and preparation for favorable catalysis with respect to the other nonmetal elements.However,an individual and comprehensive overview of fluorine-containing functional materials for oxygen electrocatalysis field is still blank.Therefore,it is very meaningful to review the recent progresses of fluorine-containing oxygen electrocatalysts.In this review,we first systematically summarize the controllable preparation methods and their possible development directions based on fluorine-containing materials from four preparation methods.Due to the strong electron-withdrawing properties of fluorine,its control of the electronic structure can effectively enhance the oxygen electrocatalytic activity of the materials.In addition,the catalytic enhancement effect of fluorine on carbonbased materials also includes the prevent oxidation and the layer peeling,and realizes the precise atomic control.And the catalytic improvement mechanism of fluorine containing metal-based compounds also includes the hydration of metal site,the crystal transformation,and the oxygen vacancy induction.Then,based on their various dimensions(0D–3D),we also have summarized the advantages of different morphologies on oxygen electrocatalytic performances.Finally,the prospects and possible future researching direction of F-containing oxygen electrocatalysts are presented(e.g.,novel pathways,advanced methods for measurement and simulation,field assistance and multi-functions).The review is considered valuable and helpful in exploring the novel designs and mechanism analyses of advanced fluorine-containing electrocatalysts. 展开更多
关键词 Fluorine-containing functional materials Action mechanisms and structure designs Density functional theory Oxygen evolution reaction Oxygen reduction reaction
下载PDF
A bionic controllable strain membrane for cell stretching at air–liquid interface inspired by papercutting 被引量:1
18
作者 Yuanrong Li Mingjun Xie +4 位作者 Shang Lv Yuan Sun Zhuang Li Zeming Gu Yong He 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期486-499,共14页
Lung diseases associated with alveoli,such as acute respiratory distress syndrome,have posed a long-term threat to human health.However,an in vitro model capable of simulating different deformations of the alveoli and... Lung diseases associated with alveoli,such as acute respiratory distress syndrome,have posed a long-term threat to human health.However,an in vitro model capable of simulating different deformations of the alveoli and a suitable material for mimicking basement membrane are currently lacking.Here,we present an innovative biomimetic controllable strain membrane(BCSM)at an air–liquid interface(ALI)to reconstruct alveolar respiration.The BCSM consists of a high-precision three-dimensional printing melt-electrowritten polycaprolactone(PCL)mesh,coated with a hydrogel substrate—to simulate the important functions(such as stiffness,porosity,wettability,and ALI)of alveolar microenvironments,and seeded pulmonary epithelial cells and vascular endothelial cells on either side,respectively.Inspired by papercutting,the BCSM was fabricated in the plane while it operated in three dimensions.A series of the topological structure of the BCSM was designed to control various local-area strain,mimicking alveolar varied deformation.Lopinavir/ritonavir could reduce Lamin A expression under over-stretch condition,which might be effective in preventing ventilator-induced lung injury.The biomimetic lung-unit model with BCSM has broader application prospects in alveoli-related research in the future,such as in drug toxicology and metabolism. 展开更多
关键词 biomimetic air-blood barrier composite material design controllable mechanical stimulus structure
下载PDF
Comparison of large deformation failure control method in a deep gob-side roadway: A theoretical analysis and field investigation
19
作者 WANG Jiong LIU Peng +2 位作者 HE Man-chao LIU Yi-peng DU Chang-xin 《Journal of Mountain Science》 SCIE CSCD 2023年第10期3084-3100,共17页
Under the dual influence of the mining disturbance of the previous working face and the advanced mining of the working face,the roadway is prone to large deformation,failure,and rockburst.Roadway stabilization has alw... Under the dual influence of the mining disturbance of the previous working face and the advanced mining of the working face,the roadway is prone to large deformation,failure,and rockburst.Roadway stabilization has always significantly influenced deep mining safety.In this article we used the research background of the large deformation failure roadway of Fa-er Coal Mine in Guizhou Province of China to propose two control methods:bolt-cable-mesh+concrete blocks+directional energy-gathering blasting(BCM-CBDE method)and 1st Generation-Negative Poisson’s Ratio(1G NPR)cable+directional energy-gathering blasting+dynamic pressure stage support(πgirder+single hydraulic prop+retractable U steel)(NPR-DEDP method).Meantime,we compared the validity of the large deformation failure control method in a deep gob-side roadway based on theoretical analysis,numerical simulations,and field experiments.The results show that directional energy-gathering blasting can weaken the pressure acting on the concrete blocks.However,the vertical stress of the surrounding rock of the roadway is still concentrated in the entity coal side and the concrete blocks,showing a’bimodal’distribution.BCM-CBDE method cannot effectively control the stability of the roadway.NPR-DEDP method removed the concrete blocks.It shows using the 1G NPR cable with periodic slipping-sticking characteristics can adapt to repeated mining disturbances.The peak value of the vertical stress of the roadway is reduced and transferred to the deep part of the surrounding rock mass,which promotes the collapse of the gangue in the goaf and fills the goaf.The pressure of the roadway roof is reduced,and the gob-side roadway is fundamentally protected.Meantime,the dynamic pressure stage support method withπgirder+single hydraulic prop+retractable U steel as the core effectively protects the roadway from dynamic pressure impact when the main roof is periodically broken.After the on-site implementation of NPR-DEDP method,the deformation of the roadway is reduced by more than 45%,and the deformation rate is reduced by more than 50%. 展开更多
关键词 Deep gob-side roadway Deformation failure control Roof structure mechanical model Stress field distribution Mining safety .Failure mode.
下载PDF
Mechanism of Nutrient Silicon and Water Temperature Influences on Phytoplankton Growth 被引量:3
20
作者 杨东方 高振会 +2 位作者 孙培艳 李梅 曲延峰 《Marine Science Bulletin》 CAS 2006年第2期49-59,共11页
This paper analyzed how nutrient silicon and water temperature influenced the variation of phytoplankton growth and the change of its assemblage structure, and probed the different characteristics of the variation of ... This paper analyzed how nutrient silicon and water temperature influenced the variation of phytoplankton growth and the change of its assemblage structure, and probed the different characteristics of the variation of phytoplankton growth and the different profiles of the change of its assemblage structure influenced by nutrient silicon and water temperature. Taking Jiaozhou Bay for example, this paper showed the process of both the variation of phytoplankton growth and the change of its assemblage structure, unveiled the mechanism of nutrient silicon and water temperature influencing the variation of phytoplankton growth and the change of its assemblage structure, and determined that nutrient silicon and water temperature were the motive power for the healthy running of the marine ecosystem. 展开更多
关键词 SILICON water temperature phytoplankton growth assemblage structure mechanism
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部