As a type of hydraulic rotary actuator,a helical hydraulic rotary actuator exhibits a large angle,high torque,and compact structure;hence,it has been widely used in various fields.However,its core technology is propri...As a type of hydraulic rotary actuator,a helical hydraulic rotary actuator exhibits a large angle,high torque,and compact structure;hence,it has been widely used in various fields.However,its core technology is proprietary to several companies and thus has not been disclosed.Furthermore,the relevant reports are primarily limited to the component level.The dynamic characteristics of the output when a helical rotary actuator is applied to a closed-loop system are investigated from the perspective of driving system design.Two main aspects are considered:one is to establish a reliable mathematical model and the other is to consider the effect of system parameter perturbation on the output.In this study,a detailed mechanical analysis of a helical rotary hydraulic cylinder is first performed,factors such as friction and load are considered,and an accurate dynamic model of the actuator is established.Subsequently,considering the nonlinear characteristics of pressure flow and the dynamic characteristics of the valve,a dynamic model of a valve-controlled helical rotary actuator angle closed-loop system is described based on sixth-order nonlinear state equations,which has never been reported previously.After deriving the system model,a sensitivity analysis of 23 main parameters in the model with a perturbation of 10%is performed under nine operating conditions.Finally,the system dynamics model and sensitivity analysis results are verified via a prototype experiment and co-simulation,which demonstrate the reliability of the theoretical results obtained in this study.The results provide an accurate mathematical model and analysis basis for the structural optimization or control compensation of similar systems.展开更多
With the widespread utilization of indium-phosphide-based high-electron-mobility transistors(InP HEMTs)in the millimeter-wave(mmW)band,the distributed and high-frequency parasitic coupling behavior of the device is pa...With the widespread utilization of indium-phosphide-based high-electron-mobility transistors(InP HEMTs)in the millimeter-wave(mmW)band,the distributed and high-frequency parasitic coupling behavior of the device is particularly prominent.We present an InP HEMT extrinsic parasitic equivalent circuit,in which the conductance between the device electrodes and a new gate-drain mutual inductance term L_(mgd)are taken into account for the high-frequency magnetic field coupling between device electrodes.Based on the suggested parasitic equivalent circuit,through HFSS and advanced design system(ADS)co-simulation,the equivalent circuit parameters are directly extracted in the multi-step system.The HFSS simulation prediction,measurement data,and modeled frequency response are compared with each other to verify the feasibility of the extraction method and the accuracy of the equivalent circuit.The proposed model demonstrates the distributed and radio-frequency behavior of the device and solves the problem that the equivalent circuit parameters of the conventional InP HEMTs device are limited by the device model and inaccurate at high frequencies when being extracted.展开更多
Due to the bus characteristics of large quality,high center of gravity and narrow wheelbase,the research of its yaw stability control(YSC)system has become the focus in the field of vehicle system dynamics.However,the...Due to the bus characteristics of large quality,high center of gravity and narrow wheelbase,the research of its yaw stability control(YSC)system has become the focus in the field of vehicle system dynamics.However,the tire nonlinear mechanical properties and the effectiveness of the YSC control system are not considered carefully in the current research.In this paper,a novel adaptive nonsingular fast terminal sliding mode(ANFTSM)control scheme for YSC is proposed to improve the bus curve driving stability and safety on slippery roads.Firstly,the STI(Systems Technologies Inc.)tire model,which can effectively reflect the nonlinear coupling relationship between the tire longitudinal force and lateral force,is established based on experimental data and firstly adopted in the bus YSC system design.On this basis,a more accurate bus lateral dynamics model is built and a novel YSC strategy based on ANFTSM,which has the merits of fast transient response,finite time convergence and high robustness against uncertainties and external disturbances,is designed.Thirdly,to solve the optimal allocation problem of the tire forces,whose objective is to achieve the desired direct yaw moment through the effective distribution of the brake force of each tire,the robust least-squares allocation method is adopted.To verify the feasibility,effectiveness and practicality of the proposed bus YSC approach,the TruckSim-Simulink co-simulation results are finally provided.The co-simulation results show that the lateral stability of bus under special driving conditions has been significantly improved.This research proposes a more effective design method for bus YSC system based on a more accurate tire model.展开更多
Railway train energy simulation is an important and popular research topic.Locomotive traction force simulations are a fundamental part of such research.Conventional energy calculation models are not able to consider ...Railway train energy simulation is an important and popular research topic.Locomotive traction force simulations are a fundamental part of such research.Conventional energy calculation models are not able to consider locomotive wheel-rail adhesions,traction adhesion control,and locomotive dynamics.This paper has developed two models to fill this research gap.The first model uses a 2D locomotive model with 27 degrees of freedom and a simplified wheel-rail contact model.The second model uses a 3D locomotive model with 54 degrees of freedom and a fully detailed wheel-rail contact model.Both models were integrated into a longitudinal train dynamics model with the consideration of locomotive adhesion control.Energy consumption simulations using a conventional model(1D model)and the two new models(2D and 3D models)were conducted and compared.The results show that,due to the consideration of wheel-rail adhesion model and traction control in the 3D model,it reports less energy consumption than the 1D model.The maximum difference in energy consumption rate between the 3D model and the 1D model was 12.5%.Due to the consideration of multiple wheel-rail contact points in the 3D model,it reports higher energy consumption than the 2D model.An 8.6%maximum difference in energy consumption rate between the 3D model and the 1D model was reported during curve negotiation.展开更多
A method, which compares the angular acceleration and vibration spectrums of shafts and gears with physical characteristics of gearbox as tooth numbers and speed ratios, is proposed to find the source of gear rattle v...A method, which compares the angular acceleration and vibration spectrums of shafts and gears with physical characteristics of gearbox as tooth numbers and speed ratios, is proposed to find the source of gear rattle vibration. A mathematical and multi-body dynamics co-simulation model is built to reproduce the gear rattle phenomenon of one typical type of manual transmission. In the model, multi-body dynamics part is used for rotational motion and engagement simulation of gearbox shafts and gears, while mathematical part for control and data processing. The simulation results show that the sound source of the gear rattle from the first gear to the third gear is similar to the experimental results;different parameters like rotating damping, contact stiffness,contact damping, inertia moment and torque fluctuation making effects on gear rattle vibration strength are researched and simulated. The comparison of the simulation and experimental results shows that this method can provide recommendations for solving practical gear rattle problems.展开更多
The prediction accuracy of a simulation method is limited by its theoretical background. This fact can lead to disadvantages regarding the simulation quality when investigating systems of high complexity, e.g. contain...The prediction accuracy of a simulation method is limited by its theoretical background. This fact can lead to disadvantages regarding the simulation quality when investigating systems of high complexity, e.g. containing components showing a fairly different behavior. To overcome this limitation, co-simulation approaches are used more and more, combining the advantages of different simulation disciplines. That is why we propose a new strategy for the dynamic simulation of cutting processes. The method couples Lagrangian particle methods, such as the smoothed particle hydrodynamics (SPH) method, and multibody system (MBS) tools using co-simulations. We demonstrate the capability of the new approach by providing simulation results of an orthogonal cutting process and comparing them with experimental data. @ 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1301305]展开更多
Modeling and Simulation of Cyber-Physical Systems(MSCPS)is demanding in terms of immediate response to dynamic and complex changes of CPS.Simulation-oriented model reuse can be used to build a whole CPS model by reusi...Modeling and Simulation of Cyber-Physical Systems(MSCPS)is demanding in terms of immediate response to dynamic and complex changes of CPS.Simulation-oriented model reuse can be used to build a whole CPS model by reusing developed models in a new sim-ulation application,which avoid repeated modeling and thus reduce the redevelopment of submodels.Model composition,one of the important methods,enables model reuse by selecting and adopting diversified integration solutions of simulation components to meet the requirements of simulation application systems.In this paper,a real-time model integration approach for global CPS modeling is proposed,which reuses devel-oped submodels by compositing submodel nodes.Specifically,a constrained directed graph of submodels for the whole system which can meet the simulation requirements is constructed by reverse matching.Submodel properties,including co-simulation distance between submodel nodes,reuse benefit and simulation performance of model nodes,are quantified.Based on the properties,the model-integrated solution for the whole CPS simulation is retrieved throughout the model constrained digraph by the Genetic Algo-rithm(GA).In the experiment,the proposed method is applied to a typical model integrated computing scenario containing multiple model-integration solutions,among which the Pareto optimal solutions are retrieved.Results show that the effectiveness of the model integration method proposed in this paper is verified.展开更多
To investigate the re-adhesion and dynamic characteristics of the locomotive drive system with wheel slip controller,a co-simulation model of the train system was established by SIMPACK and MATLAB/SIMULINK.The uniform...To investigate the re-adhesion and dynamic characteristics of the locomotive drive system with wheel slip controller,a co-simulation model of the train system was established by SIMPACK and MATLAB/SIMULINK.The uniform running and starting conditions were considered,and the influence of structural stiffness of the drive system and the wheel slip controller on the re-adhesion and acceleration performance of the locomotive was investigated.The simulation results demonstrated that the stick-slip vibration is more likely to occur in locomotives with smaller structural stiffnesses during adhesion reduction and recovery processes.There are many frequency components in the vibration acceleration spectrum of the drive system,because the longitudinal and rotational vibrations of the wheelset are coupled by the wheel‒rail tangential force when stick-slip vibration occurs.In general,increasing the structural stiffness of the drive system and reducing the input energy in time are effective measures to suppress stick-slip vibration.It should also be noted that inappropriate matching of the wheel slip controller and drive system parameters may lead to electro-mechanical coupling vibration of the drive system,resulting in traction force fluctuation and poor acceleration performance.展开更多
基金National Natural Science Foundation of China(Grant No.51922093)Scientific Research Fund of Zhejiang Provincial Education Department of China(Grant No.Y202148352)Major Science and Technology Projects in Ningbo of China(Grant No.2019B10054).
文摘As a type of hydraulic rotary actuator,a helical hydraulic rotary actuator exhibits a large angle,high torque,and compact structure;hence,it has been widely used in various fields.However,its core technology is proprietary to several companies and thus has not been disclosed.Furthermore,the relevant reports are primarily limited to the component level.The dynamic characteristics of the output when a helical rotary actuator is applied to a closed-loop system are investigated from the perspective of driving system design.Two main aspects are considered:one is to establish a reliable mathematical model and the other is to consider the effect of system parameter perturbation on the output.In this study,a detailed mechanical analysis of a helical rotary hydraulic cylinder is first performed,factors such as friction and load are considered,and an accurate dynamic model of the actuator is established.Subsequently,considering the nonlinear characteristics of pressure flow and the dynamic characteristics of the valve,a dynamic model of a valve-controlled helical rotary actuator angle closed-loop system is described based on sixth-order nonlinear state equations,which has never been reported previously.After deriving the system model,a sensitivity analysis of 23 main parameters in the model with a perturbation of 10%is performed under nine operating conditions.Finally,the system dynamics model and sensitivity analysis results are verified via a prototype experiment and co-simulation,which demonstrate the reliability of the theoretical results obtained in this study.The results provide an accurate mathematical model and analysis basis for the structural optimization or control compensation of similar systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61434006 and 61704189)the Fund from the Youth Innovation Promotion Association of the Chinese Academy of Sciences。
文摘With the widespread utilization of indium-phosphide-based high-electron-mobility transistors(InP HEMTs)in the millimeter-wave(mmW)band,the distributed and high-frequency parasitic coupling behavior of the device is particularly prominent.We present an InP HEMT extrinsic parasitic equivalent circuit,in which the conductance between the device electrodes and a new gate-drain mutual inductance term L_(mgd)are taken into account for the high-frequency magnetic field coupling between device electrodes.Based on the suggested parasitic equivalent circuit,through HFSS and advanced design system(ADS)co-simulation,the equivalent circuit parameters are directly extracted in the multi-step system.The HFSS simulation prediction,measurement data,and modeled frequency response are compared with each other to verify the feasibility of the extraction method and the accuracy of the equivalent circuit.The proposed model demonstrates the distributed and radio-frequency behavior of the device and solves the problem that the equivalent circuit parameters of the conventional InP HEMTs device are limited by the device model and inaccurate at high frequencies when being extracted.
基金Supported by National Natural Science Foundation of China(Grant Nos.52072161,U20A20331)China Postdoctoral Science Foundation(Grant No.2019T120398)+2 种基金State Key Laboratory of Automotive Safety and Energy of China(Grant No.KF2016)Vehicle Measurement Control and Safety Key Laboratory of Sichuan Province(Grant No.QCCK2019-002)Young Elite Scientists Sponsorship Program by CAST(Grant No.2018QNRC 001).
文摘Due to the bus characteristics of large quality,high center of gravity and narrow wheelbase,the research of its yaw stability control(YSC)system has become the focus in the field of vehicle system dynamics.However,the tire nonlinear mechanical properties and the effectiveness of the YSC control system are not considered carefully in the current research.In this paper,a novel adaptive nonsingular fast terminal sliding mode(ANFTSM)control scheme for YSC is proposed to improve the bus curve driving stability and safety on slippery roads.Firstly,the STI(Systems Technologies Inc.)tire model,which can effectively reflect the nonlinear coupling relationship between the tire longitudinal force and lateral force,is established based on experimental data and firstly adopted in the bus YSC system design.On this basis,a more accurate bus lateral dynamics model is built and a novel YSC strategy based on ANFTSM,which has the merits of fast transient response,finite time convergence and high robustness against uncertainties and external disturbances,is designed.Thirdly,to solve the optimal allocation problem of the tire forces,whose objective is to achieve the desired direct yaw moment through the effective distribution of the brake force of each tire,the robust least-squares allocation method is adopted.To verify the feasibility,effectiveness and practicality of the proposed bus YSC approach,the TruckSim-Simulink co-simulation results are finally provided.The co-simulation results show that the lateral stability of bus under special driving conditions has been significantly improved.This research proposes a more effective design method for bus YSC system based on a more accurate tire model.
基金The editing contribution of Mr.Tim McSweeney(Adjunct Research Fellow,Centre for Railway Engineering)is gratefully acknowledged.
文摘Railway train energy simulation is an important and popular research topic.Locomotive traction force simulations are a fundamental part of such research.Conventional energy calculation models are not able to consider locomotive wheel-rail adhesions,traction adhesion control,and locomotive dynamics.This paper has developed two models to fill this research gap.The first model uses a 2D locomotive model with 27 degrees of freedom and a simplified wheel-rail contact model.The second model uses a 3D locomotive model with 54 degrees of freedom and a fully detailed wheel-rail contact model.Both models were integrated into a longitudinal train dynamics model with the consideration of locomotive adhesion control.Energy consumption simulations using a conventional model(1D model)and the two new models(2D and 3D models)were conducted and compared.The results show that,due to the consideration of wheel-rail adhesion model and traction control in the 3D model,it reports less energy consumption than the 1D model.The maximum difference in energy consumption rate between the 3D model and the 1D model was 12.5%.Due to the consideration of multiple wheel-rail contact points in the 3D model,it reports higher energy consumption than the 2D model.An 8.6%maximum difference in energy consumption rate between the 3D model and the 1D model was reported during curve negotiation.
文摘A method, which compares the angular acceleration and vibration spectrums of shafts and gears with physical characteristics of gearbox as tooth numbers and speed ratios, is proposed to find the source of gear rattle vibration. A mathematical and multi-body dynamics co-simulation model is built to reproduce the gear rattle phenomenon of one typical type of manual transmission. In the model, multi-body dynamics part is used for rotational motion and engagement simulation of gearbox shafts and gears, while mathematical part for control and data processing. The simulation results show that the sound source of the gear rattle from the first gear to the third gear is similar to the experimental results;different parameters like rotating damping, contact stiffness,contact damping, inertia moment and torque fluctuation making effects on gear rattle vibration strength are researched and simulated. The comparison of the simulation and experimental results shows that this method can provide recommendations for solving practical gear rattle problems.
基金supported by the German Research Foundation (DFG) under the Priority Program SPP 1480 'Modelling, Simulation and Compensation of Thermal Effects for Complex Machining Processes'Subproject 'Modelling and Compensation of Thermal Effects for Short Hole Drilling' (EB 195/12-1)the support of the Institute for Machine Tools as well as the Materials Testing Institute of the University of Stuttgart,providing thern with necessary experimental data
文摘The prediction accuracy of a simulation method is limited by its theoretical background. This fact can lead to disadvantages regarding the simulation quality when investigating systems of high complexity, e.g. containing components showing a fairly different behavior. To overcome this limitation, co-simulation approaches are used more and more, combining the advantages of different simulation disciplines. That is why we propose a new strategy for the dynamic simulation of cutting processes. The method couples Lagrangian particle methods, such as the smoothed particle hydrodynamics (SPH) method, and multibody system (MBS) tools using co-simulations. We demonstrate the capability of the new approach by providing simulation results of an orthogonal cutting process and comparing them with experimental data. @ 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1301305]
基金This work was supported by the National Key R&D Program of China(No.2018YFB1701600).
文摘Modeling and Simulation of Cyber-Physical Systems(MSCPS)is demanding in terms of immediate response to dynamic and complex changes of CPS.Simulation-oriented model reuse can be used to build a whole CPS model by reusing developed models in a new sim-ulation application,which avoid repeated modeling and thus reduce the redevelopment of submodels.Model composition,one of the important methods,enables model reuse by selecting and adopting diversified integration solutions of simulation components to meet the requirements of simulation application systems.In this paper,a real-time model integration approach for global CPS modeling is proposed,which reuses devel-oped submodels by compositing submodel nodes.Specifically,a constrained directed graph of submodels for the whole system which can meet the simulation requirements is constructed by reverse matching.Submodel properties,including co-simulation distance between submodel nodes,reuse benefit and simulation performance of model nodes,are quantified.Based on the properties,the model-integrated solution for the whole CPS simulation is retrieved throughout the model constrained digraph by the Genetic Algo-rithm(GA).In the experiment,the proposed method is applied to a typical model integrated computing scenario containing multiple model-integration solutions,among which the Pareto optimal solutions are retrieved.Results show that the effectiveness of the model integration method proposed in this paper is verified.
基金the National Natural Science Foundation of China(No.U2268211)the Sichuan Provincial Natural Science Foundation(Nos.2022NSFSC0034 and 2022NSFSC1901)+1 种基金the Independent Research and Development Projects of the State Key Laboratory of Traction Power(No.2022TPL_T02)the Opening Foundation of The State Key Laboratory of Heavy Duty AC Drive Electric Locomotive Systems Integration.
文摘To investigate the re-adhesion and dynamic characteristics of the locomotive drive system with wheel slip controller,a co-simulation model of the train system was established by SIMPACK and MATLAB/SIMULINK.The uniform running and starting conditions were considered,and the influence of structural stiffness of the drive system and the wheel slip controller on the re-adhesion and acceleration performance of the locomotive was investigated.The simulation results demonstrated that the stick-slip vibration is more likely to occur in locomotives with smaller structural stiffnesses during adhesion reduction and recovery processes.There are many frequency components in the vibration acceleration spectrum of the drive system,because the longitudinal and rotational vibrations of the wheelset are coupled by the wheel‒rail tangential force when stick-slip vibration occurs.In general,increasing the structural stiffness of the drive system and reducing the input energy in time are effective measures to suppress stick-slip vibration.It should also be noted that inappropriate matching of the wheel slip controller and drive system parameters may lead to electro-mechanical coupling vibration of the drive system,resulting in traction force fluctuation and poor acceleration performance.