A continuum damage mechanics (CDM) meso-model was derived for both intraply and interply progressive failure behaviors of a 2D woven-fabric composite laminate under a transversely low velocity impact.An in-plane aniso...A continuum damage mechanics (CDM) meso-model was derived for both intraply and interply progressive failure behaviors of a 2D woven-fabric composite laminate under a transversely low velocity impact.An in-plane anisotropic damage constitutive model of a 2D woven composite ply was derived based on CDM within a thermodynamic framework,an elastic constitutive model with damage for the fibre directions and an elastic-plastic constitutive model with damage for the shear direction.The progressive failure behavior of a 2D woven composite ply is determined by the damage internal variables in different directions with appropriate damage evolution equations.The interface between two adjacent 2D woven composite plies with different ply orientations was modeled by a traction-separation law based interface element.An isotropic damage constitutive law with CDM properties was used for the interface element,and a damage surface which combines stress and fracture mechanics failure criteria was employed to derive the damage initiation and evolution for the mixed-mode delamination of the interface elements.Numerical analysis and experiments were both carried out on a 2D woven glass fibre/epoxy laminate.The simulation results are in agreement with the experimental counterparts,verifying the progressive failure model of a woven composite laminate.The proposed model will enhance the understanding of dynamic deformation and progressive failure behavior of composite laminate structures in the low velocity impact process.展开更多
Semisolid-rolling method was successfully developed to prepare the Ni-coated woven carbon fibers reinforced Al-matrix composite. Due to the appropriate matrix flowability and rolling pressure, the Al-matrix could infi...Semisolid-rolling method was successfully developed to prepare the Ni-coated woven carbon fibers reinforced Al-matrix composite. Due to the appropriate matrix flowability and rolling pressure, the Al-matrix could infiltrate into the woven fibers sufficiently and attach to the reinforcements closely forming a smooth interface. The rolling speed of 4 rad/min offered a subtle equilibrium between the heat transfer and the material deformation. The covering matrix should be controlled at semisolid state to provide a better infiltration behavior and a protective effect on the carbon fibers. With the addition of fibers, an improvement for more than 25% was obtained in the bending strength of the materials. Furthermore, the woven carbon fibers could strengthen the composite in multiple directions, rather than only along the fiber longitudinal directions. The annealing process promoted the Ni coating to react with and to diffuse into the matrix, resulted in an obvious increase of the bending strength.展开更多
文摘A continuum damage mechanics (CDM) meso-model was derived for both intraply and interply progressive failure behaviors of a 2D woven-fabric composite laminate under a transversely low velocity impact.An in-plane anisotropic damage constitutive model of a 2D woven composite ply was derived based on CDM within a thermodynamic framework,an elastic constitutive model with damage for the fibre directions and an elastic-plastic constitutive model with damage for the shear direction.The progressive failure behavior of a 2D woven composite ply is determined by the damage internal variables in different directions with appropriate damage evolution equations.The interface between two adjacent 2D woven composite plies with different ply orientations was modeled by a traction-separation law based interface element.An isotropic damage constitutive law with CDM properties was used for the interface element,and a damage surface which combines stress and fracture mechanics failure criteria was employed to derive the damage initiation and evolution for the mixed-mode delamination of the interface elements.Numerical analysis and experiments were both carried out on a 2D woven glass fibre/epoxy laminate.The simulation results are in agreement with the experimental counterparts,verifying the progressive failure model of a woven composite laminate.The proposed model will enhance the understanding of dynamic deformation and progressive failure behavior of composite laminate structures in the low velocity impact process.
基金supported by the National Natural Science Foundation of China (Nos. 51271042 and 51501027)the Fundamental Research Funds for the Central Universities, the Key Laboratory of Basic Research Projects of Liaoning Province Department of Education (No. LZ2014007)+1 种基金the Natural Science Foundation of Liaoning Province (No. 2014028013)China Postdoctoral Science Foundation (No. 2015M570246)
文摘Semisolid-rolling method was successfully developed to prepare the Ni-coated woven carbon fibers reinforced Al-matrix composite. Due to the appropriate matrix flowability and rolling pressure, the Al-matrix could infiltrate into the woven fibers sufficiently and attach to the reinforcements closely forming a smooth interface. The rolling speed of 4 rad/min offered a subtle equilibrium between the heat transfer and the material deformation. The covering matrix should be controlled at semisolid state to provide a better infiltration behavior and a protective effect on the carbon fibers. With the addition of fibers, an improvement for more than 25% was obtained in the bending strength of the materials. Furthermore, the woven carbon fibers could strengthen the composite in multiple directions, rather than only along the fiber longitudinal directions. The annealing process promoted the Ni coating to react with and to diffuse into the matrix, resulted in an obvious increase of the bending strength.